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Abstract A nonlinear constitutive model for a single lamina is proposed for the failure analysis of

composite laminates. In the material model, both fiber and matrix are assumed to behave elastic-

plastically and the in-plane shear is assumed to behave nonlinearly with a variable shear parameter.

The damage onset for individual lamina is detected by a mixed failure criterion, composed of the

Tsai-Wu criterion and the maximum stress criterion. After damage takes place within the lamina,

the fiber and in-plane shear are assumed to exhibit brittle behavior, and the matrix is assumed to

exhibit degrading behavior. The proposed nonlinear material model is tested against experimental

data of composite laminates subjected to uniaxial compressive loads, and good agreement is

obtained.
� 2019 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Due to lightweight and high strength, the use of composite

laminate materials in aerospace industry has increased rapidly
in recent years. Numerous cases involving the design of com-
posite structures show that there is a need for more refined

analysis that takes into account phenomena such as progres-
sive failure and inelastic or nonlinear deformation of compos-
ite materials.1–12 It is well known that unidirectional fibrous
composites exhibit severe nonlinearity in their in-plane shear

stress-strain relations.13 In addition, deviation from linearity
is also observed with in-plane transverse loading but the degree
of nonlinearity is not comparable to that observed with the in-
plane shear.14,15 Therefore, appropriate modeling of the non-

linear behavior of fiber-reinforced composite materials
becomes crucial.

A significant number of macro-mechanical models have

been proposed to represent the constitutive relation of fiber-
reinforced composite materials such as nonlinear elasticity
models,13,14,16 plasticity models,17–19 or damage theory cou-

pled with elasticity.20 In addition, various failure criteria have
also been proposed to predict the onset of damage in single
layers within fiber-reinforced composites, i.e., limit theories,21

polynomial theories,22,23 and direct mode-determining theo-
ries.24–27 As for the post-damage process of individual lamina,
two idealized types of failure modes have been defined in a pre-
vious study;19 namely, brittle mode and ductile mode. In the

case of the brittle mode, the material gives up its entire stiffness
and strength in the dominant stress direction as the damage is
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http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hthu@mail.ncku.edu.tw
https://doi.org/10.1016/j.cja.2019.02.003
http://www.sciencedirect.com/science/journal/10009361
https://doi.org/10.1016/j.cja.2019.02.003
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1 Material, element and structure coordinates of fiber

reinforced plastics.

Fig. 2 Stress-strain curves of the proposed nonlinear failure

model.

Constitutive modelling of composite laminates under uniaxial compression 939
reached. For the ductile mode, the material retains its strength
but loses its overall stiffness in the direction of damage.

Obviously, a rational analysis of the individual layers

within the laminate under loading must include three parts,
i.e., pre-damage analysis, damage onset determination, and
post-damage analysis. In the pre-damage analysis, the proper

constitutive model of lamina is a key tool to describe the real
behavior of each layer within the laminate under loading. In
previous studies, it is assumed that the fiber and matrix per-

form with elastic-plastic behavior,19 and the in-plane shear
behaves nonlinearly with a constant shear parameter.25 In this
study, it is proposed that the in-plane shear behaves nonlin-
early with a variable shear parameter. The difference between

these two distinct types of shear parameters is investigated in
this study. Up to now, the Tsai-Wu failure criterion8,23 is the
most common criterion used to determine the damage onset

of individual layer. However, Hu et al.28–30 point out that
the Tsai-Wu failure criterion would cause overestimated fail-
ure stresses in the fiber direction of the composite lamina. To

eliminate this unreasonable phenomenon, an extra limitation
should be added into the Tsai-Wu failure criterion to obtain
a more accurate and reasonable stresses in the composite lam-

ina. As the results, Zhu and Sankar31 and Hu et al. 28–30 sug-
gested that the combination of both the Tsai-Wu criterion and
the maximum stress criterion, which is called the mixed crite-
rion, was a much better criterion for determining the damage

to lamina. Thus, in this paper, a mixed criterion is employed
to determine the damage onset of individual layers. For the
post-damage analysis, a degrading mode for matrix and brittle

modes for fiber and in-plane shear are proposed to simulate
the post damage behavior of individual lamina.

In this paper, the proposed nonlinear analysis model is

developed first. Then, various failure criteria and post damage
modes are reviewed, and a mixed failure criterion and the post-
damage modes are proposed. Finally, the ABAQUS finite ele-

ment program32 is used to verify the proposed constitutive
model against experimental data of Petit and Waddoups14

and the conclusions obtained from the numerical analysis are
given.

2. Nonlinear analysis model

2.1. Proposed stress-strain curves and post damage models

Fig. 1 shows the material, element and structure coordinates of

fiber reinforced plastics. In Fig. 1, (1, 2, 3) means the material
coordinate, where 1 indicates the fiber direction, 2 indicates the
orthogonal direction to the fiber direction in the plane of the

lamina, and 3 refers the transverse direction to the plane of
the lamina. In addition, (x, y, z) represents the element local
coordinate system, and (X, Y, Z) the structural global coordi-

nate system.
For a single lamina subjected to tensile loading, the stress-

strain curves of the nonlinear analysis model are shown in
Figs. 2(a) and (b). It is assumed that the material response

can be represented by elastic-plastic stress-strain curves in
the principal material directions, i.e., the 1 direction (fiber
direction) and the 2 direction (transverse direction), of the lam-

ina. Let Xyt and Xut be the yield strength and the ultimate
strength of the lamina for tension in the 1 direction, Yyt and
Yut be the yield strength and the ultimate strength of the lam-
ina for tension in the 2 direction. For the elastic regions, i.e.,

r1 6 Xyt and r2 6 Yyt, the elastic moduli are denoted by Eiie

(i ¼ 1; 2). For the plastic regions, i.e., Xyt 6 r1 6 Xut and

Yyt 6 r2 6 Yut, the elastic moduli are denoted by Eiipt

(i ¼ 1; 2). For a lamina subjected to compressive loading, the
stress-strain curves are shown in Figs. 2(c) and (d). It is obvi-

ous that Xyc and Xuc are the yield strength and the ultimate
strength of the lamina for compression in the 1 direction and
that Yyc and Yuc are the yield strength and the ultimate

strength of the lamina for compression in the 2 direction.
For the plastic regions, i.e., Xyc 6 r1 6 Xuc and

Yyc 6 r2 6 Yuc, the elastic moduli are denoted by Eiipc

(i ¼ 1; 2). Let S be the ultimate in-plane shear strength. It is
assumed that the in-plane shear in the 1-2 direction can
be modeled by a nonlinear stress-strain curve as shown in
Fig. 2(e).
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For the post-damage region, the strengths of the lamina are
dropped to zero (brittle modes) in the 1 direction (Figs. 2(a)
and (c)) and the 1-2 direction (Fig. 2(e)). This is because the

failures of the lamina in 1 and 1-2 directions are dominated
by fiber and its failure mode is sudden and brittle. It is known
that the failure of the lamina in the 2 direction is dominated by

matrix. After the failure of the matrix occurs, its strength
would drop to zero gradually. Hence, in the proposed model
the elastic stiffness of the lamina is assumed to have a negative

modulus E22f in the 2 direction (degrading mode) and the dam-
aged lamina unloads in the transverse direction until no stress
remains in the lamina (Figs. 2(b) and (d)).

2.2. Nonlinear constitutive model of the lamina

For fiber-composite laminate materials, each lamina can be

considered to be an orthotropic layer in a plane stress condi-
tion. Taking into account the elastic-plastic behavior in the 1
and 2 directions and the nonlinear behavior on the 1-2 plane

within the lamina, the strain-stress relations for an orthotropic
lamina in the material coordinates (1,2) can be written as13
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where e1, e2, and c12 represent the strains in the 1 direction, 2
direction and the 1-2 plane, respectively. The r1, r2 and s12
denote the stresses in the 1 direction, 2 direction and the 1-2

plane, respectively. The t12 and t21 are Poisson’s ratios, and
E11 and E22 are the elastic moduli in the 1 and 2 directions.
If the lamina is in the elastic stage in the 1 or 2 direction, then

E11 = E11e or E22 = E22e. If the lamina is in the plastic stage in
the 1 or 2 direction, then E11 = E11p or E22 = E22p. The G12 is
the shear modulus, and S66 is a shear parameter to account for

the in-plane shear nonlinearity. The S66 shear parameter in Eq.
(1) was derived by Hahn and Tsai13 using the complementary
elastic energy density and has been verified against the exper-
imental data on off-axis tests. For a specific composite lamina,

the value of S66 can be determined by a curve fit to pure shear
test data.

The incremental stress-strain relations for a nonlinear

orthotropic lamina can be given as follows:
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1De

0 ð2Þ
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2Dc

0
t ð3Þ

where Dr0 ¼ Dr1;Dr2;Ds12½ �T; Ds0t ¼ Ds13;Ds23½ �T;
De0 ¼ De1;De2;Dc12½ �T;Dc0t ¼ Dc13;Dc23½ �T and
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The terms a1 and a2 are the shear correction factors and are
taken to be 0.83 in this study.33 It is assumed that the trans-
verse shear stresses always behave linearly and do not affect
the nonlinear in-plane behavior of individual lamina.
3. Failure criterion, degradation of stiffness and laminate

governing equations

3.1. Review of failure criteria

As previously mentioned, failure criteria fall into three basic

categories: (A) limit theories,21 (B) polynomial theories,22,23

and (C) direct mode determining theories.24–27 Among them,
the most popular criteria, i.e., the maximum stress criterion21

and the Tsai-Wu failure criterion,23 are selected to be briefly
reviewed.

3.1.1. Maximum stress criterion

The maximum stress criterion is the dominant member of the
limit failure theory category.21 For the plane stress condition,
the maximum stress criterion for an orthotropic material can
be expressed as follows:

r1

Xut

¼ 1 or
r1

Xuc

¼ 1 ð6Þ

r2

Yut

¼ 1 or
r2

Yuc

¼ 1 ð7Þ

s12
S

¼ 1 ð8Þ
3.1.2. Tsai-Wu failure criterion

The Tsai-Wu failure criterion has a general nature, because it

contains almost all other polynomial theories as special cases.
Under the plane stress condition, the Tsai-Wu failure criterion
has the following form:23

F1r1 þ F2r2 þ F11r
2
1 þ 2F12r1r2 þ F22r

2
2 þ F66s

2
12 ¼ 1 ð9aÞ

where

F1 ¼ 1
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þ 1
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F11 ¼ 1
XutXuc

F2 ¼ 1
Yut

þ 1
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F22 ¼ 1
YutYuc

F66 ¼ 1
S2

8>>>>>>><
>>>>>>>:

ð9bÞ

The stress interaction term F12 in Eq. (9a) is difficult to

determine. In lieu of additional experimental data on other
materials and loading conditions, a numerical experiment
was performed by Narayanaswami and Adelman34 to estimate

the errors for ten different composite systems under six differ-
ent loadings. The maximum error in predicted failure loads
among all cases was below 10 percent. These results suggest
that the Tsai-Wu failure criterion with F12 ¼ 0 can predict fail-

ure of practical composite materials under general biaxial
loading with sufficient accuracy for engineering applications.
Thus, the use of Tsai-Wu failure criterion with F12 ¼ 0 is rec-

ommended as a preferred alternative to the experimental deter-
mination of F12 for orthotropic laminae. As the result, F12 ¼ 0
is used in this study.

3.2. Mixed failure criterion

Although the Tsai-Wu failure criterion is widely used in deter-
mining the damage onset of a lamina, there are some draw-
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backs with it. Among them is the fact that the failure stress of
fiber in a lamina may exceed the strength of the material in the
case of symmetric angle-ply laminates with a small fiber angle

(say 0� < h < 20�) subjected to off-axis tension.28,29 In order to
eliminate this unreasonable phenomenon, the limitation of the
maximum stress of the lamina in the fiber direction is added

into the Tsai-Wu failure criterion to obtain a mixed failure cri-
terion, which has the following formulations:

F1r1 þ F2r2 þ F11r
2
1 þ F22r

2
2 þ F66s

2
12 ¼ 1 ð10Þ

and

r1

Xut

6 1 or
r1

Xuc

6 1 ð11Þ
3.3. Normalized failure stresses and failure contribution

The Tsai-Wu failure criterion and the mixed failure criterion
consider the coupling effect of in-plane stresses, r1, r2 and
s12, in the lamina when the collapse occurs. In order to deter-

mine the individual stress ratio in the lamina, the normalized
failure stresses are defined, which represent the stress ratios
(failure stresses/corresponding strengths) in the lamina for var-

ious stresses at the onset of collapse. The expressions for the
normalized failure stresses are described as follows:

r11fð Þn ¼
r11f

Xut

or r11fð Þn ¼
r11f

Xucj j ð12aÞ

r22fð Þn ¼
r22f

Yut

or r22fð Þn ¼
r22f

Yucj j ð12bÞ

s12fð Þn ¼
s12f
S

��� ��� ð12cÞ

where r11fð Þn, r22fð Þn and s12fð Þn denote the normalized failure

stresses in the 1 direction, 2 direction, and the 1-2 plane of
the lamina, respectively. The r11f, r22f and s12f are the stresses
of the lamina in the 1 direction, 2 direction and the 1-2 plane at
the onset of failure.

3.4. Proposed degradation models

Upon damage within the lamina occurring, the material prop-

erties begin to degrade. Material degradation within the dam-
aged area is evaluated by the mode of failure predicted by the
failure criterion. Therefore, the residual stiffness of composite

strongly depends on the failure mode in each layer. According
to the literature, the degradation models for each layer are cat-
egorized into three types of failure modes, i.e., the brittle

mode, the ductile mode19 and the degrading mode.28–30 For
the brittle mode, the material loses its entire stiffness and
strength in the dominant stress direction. For the ductile mode,
the material retains its strength but loses all of its stiffness in

the failure direction. For the degrading mode, the material
loses its stiffness and strength in the failure direction gradually
until the stress in that direction is reduced to zero.

In this investigation, it is proposed that the post damage
modes are the brittle behavior for r1 and s12, and the degrad-
ing behavior for r2 (Fig. 2). The following three rules are used

to determine whether the ply failure is caused by matrix frac-
ture, shear failure, or as a result of fiber breakage or
buckling35,36:
(1) If a ply fails in the condition of X uc < r1 < X ut, and

�S < s12 < S, the damage is assumed to be matrix
induced. Consequently, the degradation of transverse
stiffness occurs. Due to the interlock action with the

neighboring plies, the damaged ply gradually loses its
capability to support transverse stress, until the fracture
in shear or the breakage or buckling in fiber on the same
ply occurs. However, the lamina remains able to carry

the longitudinal and shear stresses. In this case, the con-
stitutive matrix of the lamina becomes

Q0
1 ¼

E11 0 0

0 E22f 0

0 0 1
1=G12þ3S66s212

2
64

3
75 ð13Þ

where E22f is a negative tangent modulus in the transverse

direction of the lamina after matrix damage. In the proposed
model, the shear parameter S66 has a variable value.

(2) If the ply fails in the condition of X uc < r1 < X ut, and
s12 P S or s12 6 �S, the damage is assumed to be shear
induced. Consequently, the damaged lamina loses its

capability to support transverse and shear stresses, but
remains able to carry longitudinal stress. In this case,
the constitutive matrix of the lamina becomes

Q0
1 ¼

E11 0 0

0 0 0

0 0 0

2
64

3
75 ð14Þ

(3) If the ply fails with r1 P X ut, or r1 P X uc, the ply fail-

ure is caused by fiber breakage or buckling and a total
ply rupture is assumed. Thus, the constitutive matrix
of the lamina becomes

Q0
1 ¼

0 0 0

0 0 0

0 0 0

2
64

3
75 ð15Þ
3.5. Laminate governing equations

The forgoing nonlinear failure analysis model for fiber-
reinforced composite lamina can be combined with classical
lamination theory to form the following incremental laminate

force-strain relations: in-plane

DN ¼
Xn

i¼1

QitiDe ð16Þ

where DN ¼ DNx;DNy;DNxy

� �T
and De ¼ Dex;Dey;Dexy

� �T
are

the vectors of the incremental in-plane forces and the incre-
mental strains in the overall laminate coordinate system
ðx; yÞ, respectively. The term ti is the thickness of the i-th layer;

n is the total number of layers. The matrix Qi stands for con-
stitutive matrix for the i-th layer and can be obtained by

proper rotation of the Q0
1 matrix of that layer.36



Fig. 4 Pure shear stress-strain curves for Boron/Epoxy lamina.
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4. Numerical analysis

4.1. Numerical simulations and material properties

The aforementioned nonlinear constitutive model combined
with various failure criteria and various post damage modes

for composite materials are written in a FORTRAN subrou-
tine, i.e., the user-defined material model, UMAT. Then this
UMAT subroutine is linked to the ABAQUS finite element

program32 for the numerical analyses. The subroutine will be
called at all material calculation points of elements for which
the material definition includes a user-defined material behav-
ior. The ABAQUS program will pass the previous strains and

the current incremental strains to the UMAT subroutine. The
subroutine must update the stresses and solution-dependent
state variables to their values at the end of the increment for

which it is called. In addition, it must provide the material

Jacobian matrix Q0
1 to the ABAQUS main program.

The analyzed laminate plate is simply supported around all

edges and subjected to uniaxial compressive loads in the longi-
tudinal direction only (Fig. 3). The length of the plate L is
equal to 12 cm and the width of the plate W is equal to

2 cm. The laminate plate contains 4 plies with the thickness t
of each ply equal to 0.1016 mm. The laminae are assumed to
be perfectly bounded and no slipping occurs within the lami-
nate. Due to the boundary conditions, the laminated plate is

free to expand or contract in both x and y directions. Since
the plate has no geometric imperfection in z direction, lateral
deflection of the plate in z direction will not occur. Thus, the

failure of the plate is due to material and not due to buckling.
The stresses are uniformly distributed throughout the entire
laminate plate. Hence, only one eight-node isoparametric shell

elements with six degrees of freedom per node (three displace-
ments and three rotations) is used to model the plate. The
reduced integration rule together with hourglass stiffness con-
trol is employed to formulate the element stiffness matrix.32

In the ABAQUS program, stresses and strains in material
coordinates (1, 2, 3) are calculated at each incremental step,
and are evaluated by the failure criteria to determine both

the occurrence of failure and the mode of failure. Mechanical
properties of each lamina in the damaged area are reduced,
according to proper degradation models. Stresses and strains

are then recalculated to determine any additional damage as
a result of stress redistribution at the same load. This proce-
dure continues until no additional damage is found. Then,

the next increment of load is pursued. The final collapse load
is determined when the composite plates cannot sustain any
additional load.
Fig. 3 Geometry and boundary conditions of composite

laminates.
In order to verify the proposed nonlinear failure analysis
model, numerical results generated from the model are com-
pared with the test data of Boron/Epoxy composites.14 The

material properties of Boron/Epoxy composites used in the
analysis are E11e = 207 GPa, E11pt = E11pc = 180 GPa,
E22e = 21.2 GPa, E22pt = E22pc = 15.9 GPa, E22f = -

�33.12 GPa, G12 = 7.25 GPa, t12 ¼ 0:3,

S66 ¼ 20:61� 20exp �c12=0:00337ð ÞGPa�3 (variable), or S66 -

= 15.20 GPa�3 (constant), Xyt = 828 MPa, Xyc = -
�1346 MPa, Yyt = 57.9 MPa, Yyc = �97.3 MPa,
Xut = 1370 MPa, Xuc = �2787 MPa, Yut = 86.3 MPa,

Yuc = �262 MPa, S= 128.6 MPa. It should be noted that
the shear parameter S66 has two types, a variable type and a
constant type. The variable shear parameter is obtained by
curve fitting from the pure shear test data.15

4.2. Verification of the proposed nonlinear constitutive model

It is necessary to assure that the proposed constitutive model

can correctly simulate the stress-strain relations in the princi-
pal directions and in a pure shear of a lamina before it is
utilized to predict the mechanical behavior and failure stresses

of entire composite laminates under various loadings. Fig. 4
shows the numerical results for a single lamina subjected to
pure shear loading against the experimental data.14 It is
Fig. 5 Uniaxial tensile stress-strain curves for [±45]s Boron/

Epoxy laminate.



Fig. 6 Longitudinal compressive stress-strain curves for Boron/

Epoxy lamina.

Fig. 7 Transverse compressive stress-strain curves for Boron/

Epoxy lamina.

Fig. 8 Uniaxial compressive stress-strain curves predicted by

various matrix post failure modes for [±20]s laminate.

Fig. 9 Uniaxial compressive stress-strain curves predicted by

various matrix post failure modes for [±30] laminate.
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obvious that the shear stress-strain curve simulated by the pro-
posed constitutive model with the variable S66 model agrees
with the test data well and is much better than those with
the linear shear model (S66 ¼ 0) and the nonlinear shear model

with S66 being constant.
The results simulated by the variable S66 model and the

constant S66 model for a [±45]s laminate subjected to uniaxial

tension loading against the experimental data14 are shown in
Fig. 5. It can be seen that the result simulated by the proposed
nonlinear shear model with the variable S66 exhibits better fit

with the test data than that simulated by the nonlinear shear
model with the constant S66.

Figs. 6 and 7 illustrate the numerical results for a single

lamina subjected to uniaxial longitudinal compressive loading
and uniaxial transverse compressive loading against the exper-
imental data.14 It can be seen that the proposed elastic-plastic
behavior in the longitudinal direction and transverse direction

of the lamina exhibit quite good correlation with the experi-
mental data. As a result, the proposed material model with
the variable S66 is proved to model the nonlinear behavior of

composite laminates adequately.

4.3. Comparisons among various matrix post failure modes

The load-deformation behavior of a composite laminate is
greatly affected by the stress-strain behavior of individual lay-
ers within the laminate, and the ultimate strength of a compos-

ite laminate is greatly controlled by the post-damage mode of
damaged lamina within the laminate. In order to verify that
the proposed post-damage mode in the transverse direction
of the lamina is suitable, three idealized post failure modes,

brittle, ductile and degrading modes, are taken into account.
Fig. 8 shows the uniaxial compressive stress-strain curves pre-
dicted by various matrix post failure modes for a [±20]s angle

ply laminate against the experimental data.14 The ultimate
loads predicted by the brittle mode and the degrading mode
are exactly the same and equal to 0.82 GPa, which is close to

the experimental data 0.75 GPa. For the ductile mode, the pre-
dicted ultimate load is significantly overestimated and is
misleading.

Fig. 9 shows the uniaxial compressive stress–strain curves

predicted by various matrix post failure modes for a [±30]s
angle ply laminate against the experimental data.14 The ulti-
mate load predicted by the degrading mode is 0.36 GPa, which
is close to the experimental data 0.30 GPa. In the case of the
brittle mode, instability exists in the fiber direction immedi-

ately after the failure of the lamina occurs. As the result, the
compressive strain in the laminate is suddenly and significantly
increased, which is contradictory to the experimental data.

When the stress redistribution in the laminate is completed,
s



Fig. 10 Uniaxial compressive stress-strain curves predicted by

various matrix post failure modes for [0/90]s laminate.

Fig. 11 Uniaxial compressive stress-strain curves predicted by

various matrix post failure modes for [15/�75]s laminate.

Fig. 12 Uniaxial compressive stress-strain curves predicted by

various matrix post failure modes for [30/�60]s laminate.

Fig. 13 Uniaxial compressive stress-strain curves predicted by

various matrix post failure modes for [±45]s laminate.
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the stress in the laminate starts to increase again, and the pre-
dicted ultimate load is 0.44 GPa, which is overestimated. For

the ductile mode, the predicted ultimate load is again signifi-
cantly overestimated. Hence, it is appropriate and justified to
use the degrading mode to model the post failure of a lamina.

Fig. 10 shows the uniaxial compressive stress-strain curves
predicted by various matrix post failure modes for a [0/90]s
cross ply laminate against the experimental data.14 While the
ultimate load predicted by the brittle mode is 1.50 GPa, the

ultimate loads predicted by the ductile mode and by the
degrading mode are the same and equal to 1.54 GPa. It can
be seen that all these predicted ultimate loads are close to

the experimental data 1.74 GPa.
Figs. 11–13 show the uniaxial compressive stress-strain

curves predicted by various matrix post failure modes for

[15/75]s, [30/60]s and [±45]s cross ply laminates. Since there
are no experimental data to compare, we can only see the
trends. It can be observed that the predicted stress-strain

curves as well as the ultimate loads with different post failure
modes are exactly the same for all these three cross ply lami-
nates. In the case of the laminates with a [h/h � 90]s cross
ply layup, as the fiber angles are more deviated from 0� and

90�, the stress-strain curves of the laminates exhibit more non-
linear behavior. This is due to the nonlinear in-plane shear
effect. In addition, as the fiber angles are more deviated from

0� and 90�, the ultimate loads of the laminates become lower.

4.4. Comparisons among various failure criteria

The Tsai-Wu failure criterion23 is the most popular failure cri-
terion for composite laminate and has been extensively used in
the literature on this topic. As mentioned previously, with the

Tsai-Wu failure criterion, the failure stress of fiber in a lamina
may exceed the strength of the material in the case of symmet-
ric angle-ply laminates with a small fiber angle subjected to off-
axis tension.28,29 Hence, it is replaced by the mixed failure cri-

terion, i.e., the Tsai-Wu failure criterion combined with the
maximum stress criterion. In this section, the mixed failure cri-
terion is compared with other popular criteria such as the

Rotem criterion27, the Edge criterion26 and the Chang crite-
rion25 against the experimental data.14

Fig. 14 shows the uniaxial compressive stress-strain curves

predicted by various failure criteria for a [±20]s angle ply lam-
inate against the experimental data.14 The predicted failure
loads are 818 MPa for the Rotem criterion, 775 MPa for the
Edge criterion, 810 MPa for the Chang criterion and

818 GPa for the mixed criterion and the experimental failure
load is 755 MPa (see Table 1). All the failure loads and the
stiffnesses of the laminate predicted by the four criteria are rea-
sonably close to the experimental data.



Fig. 14 Uniaxial compressive stress-strain curves predicted by

various failure criterion for [±20]s laminate.

ig. 15 Uniaxial compressive stress-strain curves predicted by

arious failure criteria for [±30]s laminate.

Fig. 16 Uniaxial compressive stress-strain curves predicted by

various failure criteria for [±60]s laminate.
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Fig. 15 shows the uniaxial compressive stress-strain curves
predicted by various failure criteria for a [±30]s angle ply lami-

nate against the experimental data.14 The predicted failure loads
are 406 MPa for the Rotem criterion, 355 MPa for the Edge cri-
terion, 370 MPa for the Chang criterion and 362 MPa for the

mixed criterion, and the experimental failure load is 300 MPa
(see Table 1). It can be seen that the Rotem criterion overesti-
mates the stiffness and the failure load of the laminate as com-

pared to the other three criteria. Although, the failure loads of
the laminate predicted by the other three criteria are also higher
than the experimental data, the stiffnesses of the laminate pre-
dicted by the other three criteria are acceptable.

Fig. 16 shows the uniaxial compressive stress-strain curves
predicted by various failure criteria for a [±60]s angle ply lam-
inate against the experimental data14. The predicted failure

loads are 226 MPa for the Rotem criterion, 229 MPa for the
Edge criterion, 249 MPa for the Chang criterion and
249 MPa for the mixed criterion, and the experimental failure

load is 389 GPa (see Table 1). Although, the failure loads of
the laminate predicted by all criteria are significantly underes-
timated as compared to the experimental data, the stress-strain

curve predicted by the Rotem criterion still deviates from those
predicted by the other three criteria.

Fig. 17 shows the uniaxial compressive stress-strain curves
predicted by various failure criteria for a [0/90]s cross ply lam-

inate against the experimental data.14 The predicted failure
loads are 1503 MPa for the Rotem criterion, 1503 MPa for
the Edge criterion, 1535 MPa for the Chang criterion and

1535 MPa for the mixed criterion, and the experimental failure
load is 1740 MPa (see Table 1). Again all the failure loads and
the stiffnesses of the laminate predicted by the four criteria are

reasonably close to the experimental data.
Table 1 Ultimate loads predicted by the various model versus the

Laminate Experimental value

(MPa)14
Rotem criterion27 Edge c

Value

(MPa)

Error

(%)

Value

(MPa)

[±20]s 755 818 8.3 775

[±30]s 300 406 35.3 355

[±60]s 389 226 41.9 229

[0/90]s 1740 1503 13.6 1503
F

v

Fig. 18 shows the uniaxial compressive failure stresses rxf
predicted by various failure criteria for [±h]s angle ply lami-
nates against the experimental data.14 Fig. 19 shows the nor-

malized material failure stresses predicted by the various
failure criteria for [±h]s angle ply laminates subjected to uni-
axial compressive loading. It can be observed that the failure

stress rxf and the normalized failure stresses predicted by the
Tsai-Wu failure criterion and the mixed failure criterion are
almost the same with only a small discrepancy in the neighbor-

hood of the angle h ¼ 45�: It should be noted that around the
region h ¼ 45�, the predicted normalized failure stress (s12f)n of
the Tsai-Wu failure criterion exceeds the value of 1 (see Fig. 19

(a)), which is unreasonable and unlikely to occur. This is the
experimental data.

riterion26 Chang criterion25 Mixed criterion

Error

(%)

Value

(MPa)

Error

(%)

Value

(MPa)

Error

(%)

2.6 810 7.3 818 8.3

18.3 370 23.3 362 20.7

41.1 249 36.0 249 36.0

13.6 1535 11.8 1535 11.8



Fig. 17 Uniaxial compressive stress-strain curves predicted by

various failure criteria for [0/90]s laminate.

Fig. 18 Uniaxial compressive failure stresses predicted by

various failure criteria for [±h]s angle ply laminates.

Fig. 19 Normalized material failure stresses predicted by various

failure criteria for [±h]s angle ply laminates subjected to uniaxial

compressive loading.
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reason why the authors propose a mixed failure criterion for
the cases of laminates subjected to uniaxial tensile loads.28,29

Comparing the Chang failure criterion with the mixed crite-
rion, we can determine that the failure stress rxf and the nor-
malized failure stresses predicted with these two criteria are

about the same except in the region 0� 6 h 6 15�: This is
because the Chang failure criterion does not consider the joint
effect due to axial stress, transverse stress and in-plane shear

stress acting simultaneously. When 0� 6 h 6 10�: we can see
that the failure of the angle ply laminate is due to axial failure
stress (r11f)n for the Chang criterion (see Fig. 19(a)). If the joint
effect of axial stress, transverse stress and in-plane shear stress

is considered, such as the Tsai-Wu failure criterion, the pre-
dicted failure stress rxf and the normalized failure stresses (in
absolute values) will not be so high within the 0� 6 h 6 15�

region.
In the case of the Edge criterion, it can be seen that its pre-

dicted failure stress rxf is usually lower than those predicted by

other criteria (see Fig. 18). The reason for this is the fact that
its predicted stresses r1; r2 and s12 are smaller (in absolute
value) than those predicted by other criteria, which can be

clearly seen in Fig. 19(b).
In the case of the Rotem criterion, the predicted failure

stress rxf is usually higher than those predicted by other failure
criteria when h 6 45� and lower than those predicted by other

failure criteria when h P 45� (see Fig. 18). When 0� 6 h 6 15�;
the Rotem criterion, like the Chang criterion, does not con-
sider the joint effect due to axial stress, transverse stress and

in-plane shear stress acting simultaneously. Hence, it has the
similar trend as the Chang criterion. When 15� 6 h 6 80� ;the
predicted transverse stress r2 by the Rotem criterion is lower

than that by mixed criterion, and the predicted in-plane shear
stress s12 by the Rotem criterion is higher than that by mixed
criterion (see Fig. 19(b)). This is due to the Rotem model treat-

ing the in-plane shear as having linear behavior. Therefore, it
overestimates the in-plane shear stress. After the failure crite-
rion is employed, the transverse stress is then underestimated.

5. Conclusions

This paper proposes a material constitutive model for the anal-
ysis of composite laminates subjected to uniaxial compressive

loads. The main outcomes of the model contain three parts:
(A) nonlinear constitutive model, (B) mixed failure criterion,
and (C) post-damage mode. In the nonlinear constitutive

model, the fiber and matrix are simulated by elastic-plastic
behavior and the in-plane shear is simulated by nonlinear
behavior with a variable shear parameter. The mixed failure

criterion is composed of the Tsai-Wu failure criterion and
the maximum stress criterion, which can avoid the overestima-
tion of stresses predicted by the Tsai-Wu failure criterion. In

the post-damage regions, the fiber and the in-plane shear are
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simulated by a brittle mode, and the matrix is simulated by a
degrading mode. The validity of the constitutive model has
been verified against the experimental data14 and reasonable

accuracy has been achieved.
The proposed constitutive model has been compared with

other popular failure criteria for [±h]s angle ply laminates sub-

jected to uniaxial compressive loads. In the case of the Chang
criterion, the predicted failure stress rxf is usually higher than
the mixed criterion and the Tsai-Wu criterion when

0� 6 h 6 15�. In the case of the Edge criterion, the predicted
failure stress rxf is usually lower than the mixed criterion
and the Tsai-Wu criterion. In the case of the Rotem criterion,
the predicted failure stress rxf is usually higher than those pre-

dicted by the mixed criterion and the Tsai-Wu criterion when
h 6 45� and lower than those predicted by the mixed criterion
and the Tsai-Wu criterion when h P 45�.
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