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a b s t r a c t

Free vibration analyses of laminated truncated conical shells subjected to axial compressive forces are
carried out by employing the Abaqus finite element program. The fundamental frequencies of these
truncated conical shells with a given material system are then maximized with respect to fiber or-
ientations by using the golden section method. Through parametric studies, the influences of the end
condition, shell length, shell radius ratio and the compressive force on the maximum fundamental fre-
quencies, the associated optimal fiber orientations and the associated vibration modes are demonstrated
and discussed.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Due to light weight and high strength, the use of fiber re-
inforced composite laminated materials in the aerospace industry
has increased rapidly in recent years. The truncated conical shell
configuration is widely used in aircraft, spacecraft, rocket and
missile, which are frequently subjected to dynamic loads in ser-
vice. Hence, knowledge of dynamic characteristics of truncated
conical shells constructed of fiber-reinforced laminated materials,
such as their fundamental frequencies, is essential [1].

The fundamental frequencies of laminated truncated conical
shells highly depend on ply orientations, boundary conditions, and
geometric variables such as shell radius ratio and shell length [1–
12]. In additional, the fundamental frequencies of laminated
structures are significantly influenced by the initial stresses within
them [13–19]. Therefore, for laminated truncated conical shells
with a given material system, geometric shape, initial stress and
boundary condition, the proper selection of appropriate lamina-
tion to maximize the fundamental frequency of the shells becomes
an interesting problem [20–22].

There are many computational methods available today for the
vibration analysis of laminated conical shells, such as finite
.

element method (FEM) [9], discrete singular convolution (DSC)
[23,24], generalized differential quadrature (GDQ) [25] and
meshless method [26]. Comparisons of the superiority and effec-
tiveness of these methods are not the scope and the focus of this
paper. Since the FEM can easily simulate the complicated and ir-
regular geometries of structures, it is selected in this investigation
to calculate the nature frequencies of the laminated truncated
conical shells.

Research on the subject of structural optimization has been
reported by many investigators [27]. Among various optimization
schemes, the method of golden section method [28,29] is very
efficient and has been successfully applied to many engineering
problems. In this investigation, optimization of fiber-reinforced
laminated truncated conical shells to maximize their fundamental
frequencies with respect to fiber orientations is performed by
using the golden section method. The fundamental frequencies of
laminated truncated conical shells are calculated by using the
Abaqus finite element program [30]. In the paper, the constitutive
equations for fiber-composite laminate, vibration analysis and
golden section method are briefly reviewed. Then the influences of
the end condition, shell length, shell radius ratio and the com-
pressive force on the maximum fundamental frequencies, the as-
sociated optimal fiber orientations and the associated vibration
modes of laminated truncated conical shells are presented. Finally,
important conclusions obtained from this study are given.
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2. Constitutive matrix for fiber-composite laminae

In the finite element analysis, the laminated truncated conical
Fig. 1. Material, element and structure coordinates of laminated truncated conical
shells.

Fig. 2. The golden section method.
shells are modeled by eight-node isoparametric shell elements
with six degrees of freedom per node (three displacements and
three rotations). The reduced integration rule together with
hourglass stiffness control is employed to formulate the element
stiffness matrix [30].
Fig. 3. Truncated conical shells with various end conditions.

a

b

Fig. 4. Effect of end condition and L r/ 1 ratio on optimal fiber angle and optimal
fundamental frequency of /90 /0 s2 2θ[ ± ] laminated truncated conical shells with
axial compressive force (r 101 = cm, r 102 = cm, N N/ 0.2cr = ).



H.-T. Hu, P.-J. Chen / Thin-Walled Structures 97 (2015) 154–170156
During the analysis, the constitutive matrices of composite
materials at element integration points must be calculated before
the stiffness matrices are assembled from element level to global
level. For fiber-composite laminate materials, each lamina can be
considered as an orthotropic layer. The stress–strain relations for a
lamina in the material coordinate (1,2,3) (Fig. 1) at an element
integration point can be written as
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tors, which are calculated in Abaqus by assuming that the trans-
verse shear energy through the thickness of laminate is equal to
that in unidirectional bending [30,31].
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Fig. 5. Effect of end condition and L r/ 1 ratio on optimal fiber angle and optimal
fundamental frequency of /90 /0 s2 2θ[ ± ] laminated truncated conical shells with
axial compressive force (r 101 = cm, r 102 = cm, N N/ 0.4cr = ).
The constitutive equations for the lamina in the element co-
ordinate (x,y,z) then become
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,xz yz
Tγ γ γ{ } = { } and θ is measured counterclockwise about the z

axis from the element local x-axis to the material 1-axis. The
element coordinate system (x,y,z) is a curvilinear local system
(Fig. 1) that is different from the structural global coordinate (X,Y,
Z). While the element x axis is in the longitudinal direction of the
truncated conical shell, element y and z axes are in the cir-
cumferential and the radial directions of the truncated conical
shell. Let , ,o xo yo xyo

Tε ε ε γ{ } = { } be the in-plane strains at the mid-
a

b

Fig. 6. Effect of end condition and L r/ 1 ratio on optimal fiber angle and optimal
fundamental frequency of /90 /0 s2 2θ[ ± ] laminated truncated conical shells with
axial compressive force (r 101 = cm, r 102 = cm, N N/ 0.6cr = ).
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surface of the laminate section, , ,x y xy
Tκ κ κ κ{ } = { } the curvatures,

and h the total thickness of the section. If there are n layers in the
layup, the stress resultants, N N N N, ,x y xy

T{ } = { } ,

M M M M, ,x y xy
T{ } = { } and V V V,x y

T{ } = { } , can be defined as
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where zjt and zjb are the distance from the mid-surface of the
section to the top and the bottom of the j-th layer respectively. The
[0] is a 3 by 2 matrix with all the coefficients equal to zero.
a

3. Vibration analysis

For the free vibration analysis of an undamped structure, the
equation of motion of the structure can be written in the following
form [32]:
a

b

Fig. 7. Effect of end condition and L r/ 1 ratio on optimal fiber angle and optimal
fundamental frequency of /90 /0 s2 2θ[ ± ] laminated truncated conical shells with
axial compressive force (r 101 = cm, r 102 = cm, N N/ 0.8cr = ).
M D K D 0 7[ ]{ ¨ } + [ ]{ } = { } ( )

where {D} is a vector for the unrestrained nodal degrees of free-
doms, D{ ¨ } an acceleration vector, [M] the mass matrix of the
structure, [K] the stiffness matrix of the structure, and {0} a zero
vector. Since {D} undergoes harmonic motion, we can express

t tD D sin ; D D sin 82ω ω ω{ } = { ¯ } { ¨ } = − { ¯ } ( )
b

c

Fig. 8. Effect of L r/ 1 ratio and N N/ cr ratio on optimal fiber angle of /90 /0 s2 2θ[ ± ]
laminated truncated conical shells with two fixed ends (r 101 = cm, r 102 = cm).
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where D{ ¯ } vector contains the amplitudes of {D} vector. Then Eq.
(7) can be written in an eigenvalue expression as

K M D 0 92ω([ ] − [ ]){ ¯ } = { } ( )

When a laminated truncated conical shell is subjected to
compressive force, initial stresses are generated in the panel.
Consequently, the stiffness matrix [K] in Eq. (9) can be separated
a

b

c

Fig. 9. Effect of L r/ 1 ratio and N N/ cr ratio on optimal fundamental frequency of /90 /2θ[ ±
into two matrices as

K K K 10L[ ] = [ ] + [ ] ( )σ

The KL[ ] is the traditional linear stiffness matrix and K[ ]σ is a
geometric stress stiffness matrix due to the initial stresses. Then
Eq. (9) becomes
0 s2] laminated truncated conical shells with two fixed ends (r 101 = cm, r 102 = cm).
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K K M D 0 11L
2ω([ ] + [ ] − [ ]){ ¯ } = { } ( )σ

The preceding equation is an eigenvalue expression. If D{ ¯ } is
not a zero vector, we must have

K K M 0 12L
2ω[ ] + [ ] − [ ] = ( )σ

In Abaqus, a subspace iteration procedure [30] is used to solve
for the natural frequencies ω, and the eigenvectors (or vibration
modes) D{ ¯ }. The obtained smallest natural frequency (funda-
mental frequency) is then the objective function for maximization.
4. Golden section method

We begin by presenting the golden section method [28,29] for
determining the minimum of the unimodal function F, which is a
function of the independent variable X . It is assumed that lower
bound X L and upper bound XU on X are known and the minimum
Fig. 10. Fundamental vibration modes of /90 /0 s2 2θ[ ± ] laminated truncated conical sh
can be bracketed (Fig. 2). In addition, we assume that the function
has been evaluated at both bounds and the corresponding values
are FL and FU . Now we can pick up two intermediate points X1 and
X2 such that X X1 2< and evaluate the function at these two points
to provide F1 and F2. Because F1 is greater than F2, now X1 forms a
new lower bound and we have a new set of bounds, X1 and XU . We
can now select an additional point, X3, for which we evaluate F3. It
is clear that F3 is greater than F2, so X3 replaces XU as the new
upper bound. Repeating this process, we can narrow the bounds to
whatever tolerance is desired.

To determine the method for choosing the interior points X1,
X2, X3, …, we pick the values of X1 and X2 to be symmetric about
the center of the interval and satisfying the following expressions:
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Let τ be a number between 0 and 1. We can define the interior
ells with two fixed ends and under optimal fiber angles (r 101 = cm, r 102 = cm).



H.-T. Hu, P.-J. Chen / Thin-Walled Structures 97 (2015) 154–170160
points X1 and X2 to be

X X X1 15aL U1 τ τ= ( − ) + ( )

X X X1 15bL U2 τ τ= + ( − ) ( )

Substituting Eqs. (15a) and (15b) into Eq. (14), we obtain

3 1 0 162τ τ− + = ( )

Solving the above equation, we obtain 0.38197τ = . The ratio
1 / 1.61803τ τ( − ) = is the famous “golden section” number. For a
problem involving the estimation of the maximum of a one-vari-
able function F, we need only minimize the negative of the func-
tion, that is, minimize �F.
5. Numerical analysis

The accuracy of the eight-node shell element in Abaqus pro-
gram for frequency analysis has been verified by the authors
a

b

Fig. 11. Effect of end condition and L r/ 1 ratio on optimal fiber angle and optimal
fundamental frequency of /90 /0 s2 2θ[ ± ] laminated truncated conical shells with
axial compressive force (r 101 = cm, r 82 = cm, N N/ 0.2cr = ).
[17,18] and good agreements are obtained between the numerical
results and the analytical solution or experimental data. Hence, it
is confirmed that the accuracy of the shell element in Abaqus
program is good enough to analyze the vibration behavior of la-
minated structures.

5.1. Laminated truncated conical shells with shell radius ratio
r r/ 12 1 = and with various boundary conditions, lengths and axial
compressive forces

In this section, laminated truncated conical shells with four
types of boundary conditions (Fig. 3) are considered, which are
two ends fixed (denoted by FF), left end simply supported and
right end fixed (denoted by SF), left end fixed and right end simply
supported (denoted by FS), and two ends simply supported (de-
noted by SS). The axial compressive force N is applied to the right
end of the shell along the longitudinal x direction of the shell. The
radius of the conical shell at the right end, r1, is equal to 10 cm and
the radius of the shell at the left end, r2, is also equal to 10 cm
a

b

Fig. 12. Effect of end condition and L r/ 1 ratio on optimal fiber angle and optimal
fundamental frequency of /90 /0 s2 2θ[ ± ] laminated truncated conical shells with
axial compressive force (r 101 = cm, r 82 = cm, N N/ 0.4cr = ).
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(radius ratio r r/ 12 1 = ). The length of the shell L varies between
10 cm and 40 cm. The laminate layup of the conical shell is

/90 /0 s2 2θ[ ± ] and the thickness of each ply is 0.125 mm. To study
the influence of axial compressive force N on the results of opti-
mization, N¼ N0.2 cr , N0.4 cr , N0.6 cr , and N0.8 ,cr are selected for
analysis, where Ncr is the linearized critical buckling load of the
laminated truncated conical shell. The lamina consists of Graphite/
Epoxy and material constitutive properties are taken from the data
of Crawley [33], which are E 128 GPa11 = , E 11 GPa22 = ,
G 1.53 GPa23 = , G G 4.48 GPa12 13= = , 0.25,12ν = and

1500 kg/m3ρ = . The convergent analyses of the finite element
mesh have been performed by the authors [9]. No symmetry
simplifications are made for those laminated truncated conical
shells.

To find the optimal fiber angle optθ and the associated optimal
fundamental frequency optω , we can express the optimization
problem as:

Maximize: 17aω θ( ) ( )

Subjected to: 0 90 17bo oθ≤ ≤ ( )
a

b

Fig. 13. Effect of end condition and L r/ 1 ratio on optimal fiber angle and optimal
fundamental frequency of /90 /0 s2 2θ[ ± ] laminated truncated conical shells with
axial compressive force (r 101 = cm, r 82 = cm, N N/ 0.6cr = ).
Before the golden section method is carried out, the funda-
mental frequency ω of the laminated truncated conical shell is
calculated by employing the Abaqus finite element program for
every 10o increment in θ angle to locate the maximum point ap-
proximately. Then proper upper and lower bounds are selected so
that the fundamental frequency is a unimodal function within the
search region. Finally, the golden section method is carried out to
find the maximum. The optimization process is terminated when
an absolute tolerance (the difference of the two intermediate
points between the upper bound and the lower bound) 0. 5oθΔ ≤
is reached.

Fig. 4 shows the optimal fiber angles and the associated optimal
fundamental frequencies optω with respect to the L r/ 1 ratio for

/90 /0 s2 2θ[ ± ] laminated truncated conical shells with various end
conditions and with N N/ cr equal to 0.2. From Fig. 4a we can see
that the optimal fiber angle optθ of the laminated truncated conical
shell seems to be insensitive to the boundary conditions. In ad-
dition, the optimal fiber angle optθ decreases with the increase of
L r/ 1 ratio. From Fig. 4b, we can observe that the optimal funda-
mental frequency optω also decreases with the increase of L r/ 1 ratio.
The optimal fundamental frequency optω is more sensitive to the
a

b

Fig. 14. Effect of end condition and L r/ 1 ratio on optimal fiber angle and optimal
fundamental frequency of /90 /0 s2 2θ[ ± ] laminated truncated conical shells with
axial compressive force (r 101 = cm, r 82 = cm, N N/ 0.8cr = ).
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end conditions for short conical shell (say L r/ 11 = ) and is in-
sensitive to the end conditions for long conical shell (say L r/ 41 = ).
Nevertheless, among these shells under the same geometric con-
figuration, the FF shells have the highest optimal fundamental
frequencies, and the SS shells have the lowest optimal
a

b

c

Fig. 15. Effect of L r/ 1 ratio and N N/ cr ratio on optimal fiber angle of /90 /0 s2 2θ[ ± ]
laminated truncated conical shells with two fixed ends (r 101 = cm, r 82 = cm).
fundamental frequencies. Though, the optimal fundamental fre-
quencies optω for the SF shells are slightly higher than those of the
FS shells, their differences are hard to distinguish.

Figs. 5, 6 and 7 show the optimal fiber angle optθ and the as-
sociated optimal fundamental frequency optω with respect to the
a

b

c

Fig.16. Effect of L r/ 1 ratio and N N/ cr ratio on optimal fundamental frequency of
/90 /0 s2 2θ[ ± ] laminated truncated conical shells with two fixed ends ( r 101 = cm,

r 82 = cm).
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L r/ 1 ratio for /90 /0 s2 2θ[ ± ] laminated truncated conical shells with
various end conditions and with N N/ cr equal to 0.4, 0.6 and 0.8.
Generally, Figs. 5, 6 and 7 show similar trend as Fig. 4. The ex-
ceptions are the optimal fiber angles of conical shells with L r/ 31 =
might be greater than those with L r/ 21 = .

Fig. 8 shows the influence of L r/ 1 ratio and N N/ cr ratio on op-
timal fiber angle of /90 /0 s2 2θ[ ± ] laminated truncated conical
shells with two fixed ends. It can be seen that the optimal fiber
angle optθ decreases with the increase of L r/ 1 ratio (Fig. 8b). The
exceptions are when N N/ 0.6cr = and 0.8, the optimal fiber angles
for conical shells with L r/ 31 = might be greater than those with
L r/ 21 = . In addition, the optimal fiber angle optθ decreases with the
increase of the compressive force N (Fig. 8c). The exceptions are
when L r/ 11 = , the optimal fiber angles for conical shells increase
slightly with the increase of N N/ cr ratio.
Fig. 17. Fundamental vibration modes of /90 /0 s2 2θ[ ± ] laminated truncated conical sh
Fig. 9 shows the influence of L r/ 1 ratio and N N/ cr ratio on op-
timal fundamental frequency of /90 /0 s2 2θ[ ± ] laminated truncated
conical shells with two fixed ends. It can be clearly seen that the
optimal fundamental frequency optω decreases with the increase of
L r/ 1 ratio (Fig. 9b). In addition, the optimal fundamental frequency

optω decreases with the increase of the compressive force N
(Fig. 9c) and the decrease in the optimal fundamental frequency
for short conical shell (say L r/ 11 = ) is more significant than that for
long conical shell (say L r/ 41 = ). Similar trends are also obtained for
laminated truncated conical shells with other boundary conditions
[34].

Fig. 10 shows the fundamental vibration modes of laminated
truncated conical shells under optimal fiber angle optθ for L r/ 11 =
and 4. It can be observed that under the same N N/ cr ratio and
optimal fiber angle condition, the fundamental vibration mode of
ells with two fixed ends and under optimal fiber angles (r 101 = cm, r 82 = cm).
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Fig. 18. Effect of end condition and L r/ 1 ratio on optimal fiber angle and optimal
fundamental frequency of /90 /0 s2 2θ[ ± ] laminated truncated conical shells with
axial compressive force (r 101 = cm, r 62 = cm, N N/ 0.2cr = ).

a

b

Fig. 19. Effect of end condition and L r/ 1 ratio on optimal fiber angle and optimal
fundamental frequency of /90 /0 s2 2θ[ ± ] laminated truncated conical shells with
axial compressive force (r 101 = cm, r 62 = cm, N N/ 0.4cr = ).
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short conical shell has more wave numbers in the circumferential
direction than that of long conical shell. Similar trends are also
obtained for laminated truncated conical shells with other
boundary conditions [34].

5.2. Laminated truncated conical shells with shell radius ratio
r r/ 0.82 1 = and with various boundary conditions, lengths and axial
compressive forces

In this section, laminated truncated conical shells subjected to
axial compressive force and similar to those in previous section are
analyzed except that the shell radius ratio r r/2 1 is changed to 0.8.
Fig. 11 shows the optimal fiber angle optθ and the associated op-
timal fundamental frequency optω with respect to the L r/ 1 ratio for

/90 /0 s2 2θ[ ± ] laminated truncated conical shells with various end
conditions and with N N/ cr equal to 0.2. From Fig. 11a, we can again
see that the optimal fiber angles optθ of the laminated truncated
conical shells seem to be insensitive to the boundary conditions. In
addition, the optimal fiber angles optθ seem to be third-order
polynomials of L r/ 1 ratio. From Fig. 11b, we can again observe that
the optimal fundamental frequency optω decreases with the in-
crease of L r/ 1 ratio. The optimal fundamental frequency optω is
sensitive to the end conditions when L r/ 1 ratio is small and is in-
sensitive to the end conditions when L r/ 1 ratio is large. Again,
among these shells under the same geometric configuration, the
FF shells have the highest optimal fundamental frequencies, and
the SS shells have the lowest optimal fundamental frequencies.
Though, the optimal fundamental frequencies optω for the SF shells
are slightly higher than those of the FS shells, their differences are
very small.

Figs. 12, 13 and 14 show the optimal fiber angle optθ and the
associated optimal fundamental frequency optω with respect to
the L r/ 1 ratio for /90 /0 s2 2θ[ ± ] laminated truncated conical shells
with various end conditions and with N N/ cr equal to 0.4, 0.6 and
0.8. Generally, Figs. 12, 13 and 14 show similar trend as Fig. 11.
However, as N N/ cr increase from 0.2 to 0.8, the optimal fiber angles
of conical shells seem to change from third-order polynomials
of L r/ 1 ratio to first-order polynomials of L r/ 1 ratio.

Fig. 15 shows the influence of L r/ 1 ratio and N N/ cr ratio on op-
timal fiber angle of /90 /0 s2 2θ[ ± ] laminated truncated conical
shells with two fixed ends. It can be more clearly see that as N N/ cr

increase from 0.2 to 0.8, the optimal fiber angles of conical shells
seem to change from a third-order polynomial of L r/ 1 ratio to a
first-order polynomial of L r/ 1 ratio (Fig. 15b). In addition, the op-
timal fiber angle optθ seems to be insensitive to the NN/ cr ratio
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b

Fig. 20. Effect of end condition and L r/ 1 ratio on optimal fiber angle and optimal
fundamental frequency of /90 /0 s2 2θ[ ± ] laminated truncated conical shells with
axial compressive force (r 101 = cm, r 62 = cm, N N/ 0.6cr = ).

a

b

Fig. 21. Effect of end condition and L r/ 1 ratio on optimal fiber angle and optimal
fundamental frequency of /90 /0 s2 2θ[ ± ] laminated truncated conical shells with
axial compressive force (r 101 = cm, r 62 = cm, N N/ 0.8cr = ).
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when L r/ 21 = and 4 (Fig. 15c).
Fig. 16 shows the influence of L r/ 1 ratio and N N/ cr ratio on op-

timal fundamental frequency of /90 /0 s2 2θ[ ± ] laminated truncated
conical shells with two fixed ends. It can be seen that the optimal
fundamental frequency optω decreases with the increase of L r/ 1

ratio (Fig. 16b). In addition, the optimal fundamental frequency

optω decreases with the increase of the compressive force N
(Fig. 16c) and the decrease in the optimal fundamental frequency
for short conical shell is more significant than that for long conical
shell. Similar trends are also obtained for laminated truncated
conical shells with other boundary conditions [34].

Fig. 17 shows the fundamental vibration modes of laminated
truncated conical shells under optimal fiber angle optθ for L r/ 11 =
and 4. It can be observed that under the same N N/ cr ratio and
optimal fiber angle condition, the fundamental vibration mode of
short conical shell has more wave numbers in the circumferential
direction than that of long conical shell. Similar trends are also
obtained for laminated truncated conical shells with other
boundary conditions [34].
5.3. Laminated truncated conical shells with shell radius ratio
r r/ 0.62 1 = and with various boundary conditions, lengths and axial
compressive forces

In this section, laminated truncated conical shells subjected to
axial compressive force and similar to those in previous sections
are analyzed except that the shell radius ratio r r/2 1 is changed to
0.6. Fig. 18 shows the optimal fiber angle optθ and the associated
optimal fundamental frequency optω with respect to the L r/ 1 ratio
for /90 /0 s2 2θ[ ± ] laminated truncated conical shells with various
end conditions and with N N/ cr equal to 0.2. From Fig. 18a, we can
see that the optimal fiber angles optθ of the laminated truncated
conical shells seem to be insensitive to the boundary conditions. In
addition, the optimal fiber angles optθ seem to be third-order
polynomials of L r/ 1 ratio. From Fig. 18b, we can observe that the
optimal fundamental frequency optω decreases with the increase of
L/r1 ratio. The optimal fundamental frequency optω is more sensi-
tive to the end conditions when L r/ 1 ratio is small and is insensitive
to the end conditions when L r/ 1 ratio is large. Again, among these
shells under the same geometric configuration, the FF shells have
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Fig. 22. Effect of L r/ 1 ratio and N N/ cr ratio on optimal fiber angle of /90 /0 s2 2θ[ ± ]
laminated truncated conical shells with two fixed ends (r 101 = cm, r 62 = cm).
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Fig. 23. Effect of L r/ 1 ratio and N N/ cr ratio on optimal fundamental frequency of
/90 /0 s2 2θ[ ± ] laminated truncated conical shells with two fixed ends ( r 101 = cm,

r 62 = cm).
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the highest optimal fundamental frequencies, and the SS shells
have the lowest optimal fundamental frequencies. Though, the
optimal fundamental frequencies optω for the SF shells are slightly
higher than those of the FS shells, their differences are very small.

Figs. 19, 20 and 21 show the optimal fiber angle optθ and the
associated optimal fundamental frequency optω with respect to the
L/r1 ratio for /90 /0 s2 2θ[ ± ] laminated truncated conical shells with
various end conditions and with N N/ cr equal to 0.4, 0.6 and 0.8.
Generally, Figs. 19, 20 and 21 show similar trend as Fig. 18.
Fig. 22 shows the influence of L r/ 1 ratio and N N/ cr ratio on
optimal fiber angle of /90 /0 s2 2θ[ ± ] laminated truncated conical
shells with two fixed ends. It can be clearly see that the optimal
fiber angles optθ of conical shells seem to be third-order poly-
nomials of L r/ 1 ratio (Fig. 22b). In addition, the optimal fiber angle

optθ of conical shells with fixed L r/ 1 ratio seems to be less sensitive
to the NN/ cr ratio when NN/ cr ratio is large, say NN/ 0.4cr >
(Fig. 22c).



Fig. 24. Fundamental vibration modes of /90 /0 s2 2θ[ ± ] laminated truncated conical shells with two fixed ends and under optimal fiber angles (r 101 = cm, r 62 = cm).
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Fig. 23 shows the influence of L r/ 1 ratio and N N/ cr ratio on
optimal fundamental frequency of /90 /0 s2 2θ[ ± ] laminated trun-
cated conical shells with two fixed ends. It can be seen that the
optimal fundamental frequency optω decreases with the increase of
L r/ 1 ratio (Fig. 23b). In addition, the optimal fundamental fre-
quency optω decreases with the increase of the compressive force N
(Fig. 23c) and the decrease in the optimal fundamental frequency
for short conical shell is more significant than that for long conical
shell. Similar trends are also obtained for laminated truncated
conical shells with other boundary conditions [34].

Fig. 24 shows the fundamental vibration modes of laminated
truncated conical shells under optimal fiber angle optθ for L r/ 11 =
and 4. It can be observed that under the same N N/ cr ratio and
optimal fiber angle condition, the fundamental vibration mode of
short conical shell has more wave numbers in the circumferential
direction than that of long conical shell. Similar trends are also
obtained for laminated truncated conical shells with other
boundary conditions [34]. Comparing Fig. 24 with Figs. 17 and 10,
we can see that under the same L r/ 1 ratio and optimal fiber angle
condition, the fundamental vibration mode of the conical shell
with small r r/2 1 ratio has less wave numbers in the circumferential
direction than the same conical shell with large r r/2 1 ratio.

Figs. 25 and 26 show the influence of r r/2 1 ratio and N N/ cr ratio
on optimal fiber angle and optimal fundamental frequency of

/90 /0 s2 2θ[ ± ] short laminated truncated conical shells with L r/ 11 =
and with two fixed ends. From Fig. 25, we can see that the optimal
fiber angles optθ of the conical shells seem to be insensitive to r r/2 1

ratio when N N/ 0.6cr ≤ . From Fig. 26, we can see that the optimal
fundamental frequencies optω of the conical shells increase with the
increase of r r/2 1 ratio and decrease with the increase of N N/ cr ratio.

Figs. 27 and 28 show the influence of r r/2 1 ratio and N N/ cr ratio
on optimal fiber angle and optimal fundamental frequency of

/90 /0 s2 2θ[ ± ] long laminated truncated conical shells with L r/ 41 =
and with two fixed ends. From Fig. 27, we can see that the optimal
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Fig. 25. Effect of r r/2 1 ratio and N N/ cr ratio on optimal fiber angle of /90 /0 s2 2θ[ ± ]
laminated truncated conical shells with two fixed ends (r 101 = cm, L r/ 11 = ).
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Fig. 26. Effect of r r/2 1 ratio and N N/ cr ratio on optimal fundamental frequency of
/90 /0 s2 2θ[ ± ] laminated truncated conical shells with two fixed ends ( r 101 = cm,

L r/ 11 = ).
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fiber angles optθ of the conical shells seem to be insensitive to N N/ cr

ratio when r r/ 0.82 1 ≤ . From Fig. 28, we can see that the optimal
fundamental frequencies optω of the conical shells decrease with
the increase of r r/2 1 ratio and N N/ cr ratio.
6. Conclusions

Based on the numerical results of this investigation, the fol-
lowing conclusions could be drawn:
1. The optimal fiber angle optθ of the laminated truncated conical
shell is insensitive to the boundary conditions.

2. The optimal fundamental frequency optω of the laminated
truncated conical shell decreases with the increase of L r/ 1 ratio.
The optimal fundamental frequency optω is more sensitive to the
end conditions when L r/ 1 ratio is small and is insensitive to the
end conditions when L r/ 1 ratio is large.

3. The optimal fundamental frequency optω of the laminated
truncated conical shell decreases with the increase of N N/ cr

ratio. This decrease in the optimal fundamental frequency for
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Fig. 27. Effect of r r/2 1 ratio and N N/ cr ratio on optimal fiber angle of /90 /0 s2 2θ[ ± ]
laminated truncated conical shells with two fixed ends (r 101 = cm, L r/ 41 = ).
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Fig. 28. Effect of r r/2 1 ratio and N N/ cr ratio on optimal fundamental frequency of
/90 /0 s2 2θ[ ± ] laminated truncated conical shells with two fixed ends ( r 101 = cm,

L r/ 41 = ).
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short conical shell (say L r/ 11 = ) is more significant than that for
long conical shell (say L r/ 41 = )

4. For short laminated truncated conical shell (say L r/ 11 = ), its
optimal fundamental frequency optω increases with the increase
of r r/2 1 ratio.

5. For long laminated truncated conical shell (say L r/ 41 = ), its
optimal fundamental frequency optω decreases with the increase
of r r/2 1 ratio.

6. Under the same N N/ cr ratio and optimal fiber angle condition,
the fundamental vibration mode of short conical shell has more
wave numbers in the circumferential direction than that of long
conical shell.
7. Under the same L r/ 1 ratio and optimal fiber angle condition, the
fundamental vibration mode of the conical shell with small r r/2 1

ratio has less wave numbers in the circumferential direction
than the same conical shell with large r r/2 1 ratio.
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