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a b s t r a c t

A nonlinear constitutive model for a single lamina is proposed for the failure analysis of composite
laminates. In the material model, both fiber and matrix are assumed to behave as elastic-plastic and the
in-plane shear is assumed to behave nonlinearly with a variable shear parameter. The damage onset for
individual lamina is detected by a mixed failure criterion, composed of the Tsai-Wu criterion and the
maximum stress criterion. After damage takes place within the lamina, the fiber and in-plane shear are
assumed to exhibit brittle behavior, and the matrix is assumed to exhibit degrading behavior. The pro-
posed nonlinear constitutive model is tested against experimental data and good agreement is obtained.
Then, numerical analyses are carried out to study the failure behavior of symmetric angle-ply composite
laminates and symmetric cross-ply composite laminates subjected to biaxial loads. Finally, the conclu-
sions obtained from the numerical analysis are given.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Due to lightweight and high strength, the use of fiber-reinforced
composite laminate materials (Fig. 1) in aerospace industry, me-
chanical industry, marine industry and offshore structures has
increased rapidly in recent years. Numerous cases involving the
design of composite structures show that there is a need for more
refined analysis taking into account phenomena such as progres-
sive failure and inelastic or nonlinear deformation of composite
materials [1e32]. It is well known that unidirectional fibrous
composites exhibit severe nonlinearity in their in-plane shear
stressestrain relations [33,34]. In addition, deviation from linearity
is also observed with in-plane transverse loading but the degree of
nonlinearity is not comparable to that observed with the in-plane
shear [35,36]. Therefore, appropriate modeling of the nonlinear
behavior of fiber-reinforced composite materials becomes crucial.

A significant number of macro-mechanical models have been
proposed to represent the constitutive relation of fiber-reinforced
composite materials such as nonlinear elasticity models
[33,35,37], plasticity models [38e42], or damage theory coupled
with elasticity [43]. In addition, various failure criteria have also
68; fax: þ886 6 2358542.
.

been proposed to predict the onset of damage in single layer within
fiber-reinforced composites, i.e. limit theories [44], polynomial
theories [45,46], and direct mode-determining theories [3,47e49].
As for the post-damage process of individual lamina, two idealized
types of failure modes have been defined in a previous study [41];
namely, brittle and ductile. In the case of the brittle mode, the
material is assumed to give up its entire stiffness and strength in
the dominant stress direction as the damage is reached, whereas
for the ductile mode, the material retains its strength but loses its
overall stiffness in the direction of damage.

Obviously, a rational analysis of the individual layer within the
laminate under loading must include three parts; i.e., pre-damage
analysis, damage onset determination, and post-damage analysis.
In the pre-damage analysis, the material response of the lamina is
modeled by an elastic-plastic behavior in both the fiber direction
and transverse direction of the lamina. However, the in-plane shear
is assumed to behave nonlinearly with a variable shear parameter.
For the damage onset determination of individual lamina, the Tsai-
Wu failure criterion [27,46,50] is the most common criterion used
in the past. However, Lin and Hu [11,12] point out that the Tsai-Wu
failure criterion would cause overestimated failure stresses in the
fiber direction of the composite lamina. To eliminate this unrea-
sonable phenomenon, an extra limitation should be added into the
Tsai-Wu failure criterion to obtain a more accurate and reasonable
stresses in the composite lamina. As the results, Lin and Hu [11,12]
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Fig. 1. Material, element and structure coordinates of fiber reinforced plastics.
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and Zhu and Sankar [51] suggested that the combination of both
the Tsai-Wu criterion and the maximum stress criterion, which is
called the mixed criterion, was a much better criterion for deter-
mining the damage to lamina. Thus, in this paper, a mixed criterion
is employed to determine the damage onset of individual layer
within the laminate under loading. For the post-damage analysis, a
degrading mode for matrix and brittle modes for fiber and in-plane
shear are used to simulate the post damage behavior of individual
lamina.
Fig. 2. Stressestrain curves of the pr
In this paper, the nonlinear constitutive model of fiber-
reinforced composite laminate materials, involving pre-damage
analysis, damage onset determination, and post-damage analysis,
is reviewed. Then, the Abaqus finite element program [52] is used
to verify the proposed constitutive model against experimental
data. In addition, numerical analyses of composite laminates with
symmetric angle-ply and symmetric cross-ply subjected to biaxial
loads are carried out. Finally, the conclusions obtained from the
numerical analysis are given.
2. Nonlinear analysis model

2.1. Stressestrain curves and post damage models

For a single lamina subjected to tensile loading, the stressestrain
curves of thenonlinear analysismodel are shown in Fig. 2a and c. It is
assumed that the material response can be represented by elastic-
plastic stressestrain curves in the principal material directions, i.e.
the 1 direction (fiber direction) and the 2 direction (transverse di-
rection), of the lamina. Let Xyt and Xut be the yield strength and the
ultimate strength of the lamina for tension in the 1 direction, Yyt and
Yut be the yield strength and the ultimate strength of the lamina for
tension in the 2 direction. For the elastic regions, i.e. s1 � Xyt and
s2�Yyt, the elasticmoduli aredenotedbyEiie (i¼1,2). For theplastic
regions, i.e. Xyt � s1 � Xut and Yyt � s2 � Yut, the elastic moduli are
denoted by Eiipt (i ¼ 1,2). For a lamina subjected to compressive
oposed nonlinear failure model.
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loading, the stressestrain curves are shown in Fig. 2b and d. It is
obvious that Xyc and Xuc are the yield strength and the ultimate
strengthof the lamina for compression in the1direction and that Yyc
and Yuc are the yield strength and the ultimate strength of the
lamina for compression in the 2 direction. For the plastic regions, i.e.
Xyc � s1 � Xuc and Yyc � s2 � Yuc, the elastic moduli are denoted by
Eiipc (i ¼ 1,2). Let S be the ultimate in-plane shear strength. It is
assumed that the in-plane shear in the 1e2 direction can be
modeled by a nonlinear stressestrain curve as shown in Fig. 2e.

In the post-damage region, the strengths drop to zero (brittle
modes) for normal stress in the 1 direction (Fig. 2a and b) and the
shear stress in the 1e2 direction (Fig. 2e). However, the elastic stiff-
ness is assumed to have a negative modulus E22f (degrading mode)
for normal stress in the 2direction (Fig. 2c andd). Thismeans that the
damaged lamina unloads in the transverse direction through a
negative tangent modulus until no load remains in the lamina.

2.2. Nonlinear constitutive model of the lamina

For fiber-composite laminate materials, each lamina can be
considered to be an orthotropic layer in a plane stress condition.
Taking into account the elastic-plastic behavior in the 1 and 2 di-
rections and the nonlinear behavior on the 1e2 plane within the
lamina, the strainestress relations for an orthotropic lamina in the
material coordinates (1,2) can be written as [33]:
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where ε1, ε2, and g12 represent the strains in the 1 direction, 2 di-
rection and the 1e2 plane, respectively. s1, s2 and t12 denote the
stresses in the 1-direction, 2-direction and the 1e2 plane, respec-
tively. The n12 and n21 are the Poisson's ratios, and E11 and E22 are
the elastic moduli in the 1 and 2 directions. If the lamina is in the
elastic stage in the 1 or 2 direction, then E11 ¼ E11e or E22 ¼ E22e. If
the lamina is in the plastic stage in the 1 or 2 direction, then
E11¼ E11pt or E11 ¼ E11pc and E22¼ E22pt or E22¼ E22pc. The G12 is the
shear modulus, and S6666 is a shear parameter to account for the in-
plane shear nonlinearity. The value of S6666 can be determined by a
curve fit to pure shear test data.

The incremental stressestrain relations for a nonlinear ortho-
tropic lamina can be given as follows:
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The terms a1 and a2 are the shear correction factors [53] and
they are taken to be 0.83 in this study. It is assumed that the
transverse shear stresses always behave linearly and do not affect
the nonlinear in-plane behavior of individual lamina.

2.3. Failure criterion and degradation of stiffness

The maximum stress criterion is the dominant member of the
limit failure theory category [44]. For the plane stress condition, the
maximum stress criterion for an orthotropic material can be
expressed as follows:

s1

Xut
¼ 1 or

s1

Xuc
¼ 1 (6)
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t12
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The Tsai-Wu failure criterion has a general nature, because it
contains almost all other polynomial theories as special cases.
Under the plane stress condition, the Tsai-Wu failure criterion has
the following form [46]:
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The stress interaction term F12 in Eq. (9a) is difficult to deter-
mine and Narayanaswami and Adelman [54] suggested that F12
could be set equal to zero for practical engineering applications.
Therefore, F12 ¼ 0 is used in this study.

Although the Tsai-Wu failure criterion is widely used in deter-
mining the damage onset of a lamina, there are some drawbacks
with it. Among them is the fact that the failure stress of a fiber in a
lamina may exceed the strength of the material in the case of
symmetric angle-ply laminates with a small fiber angle (say
0� < q < 20�) subjected to off-axis tension [11]. In order to eliminate
this unreasonable phenomenon, the limitation of the maximum
stress of the lamina in the fiber direction is added into the Tsai-Wu
failure criterion to obtain a mixed failure criterion [11,12,51], which
has the following formulations:

F1s1þF2s2þF11s
2
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and

s1
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� 1 or
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� 1 (10b)

2.4. Degradation models

Upon damage within the lamina occurring, the material prop-
erties begin to degrade. According to the literature, the degradation
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models for each layer can be separated into three types, i.e. the
brittle, ductile [41] and degrading modes [11,12]. For the brittle
mode, the material is assumed to lose its entire stiffness and
strength in the dominant stress direction. For the ductile mode the
material retains its strength but loses all of its stiffness in the failure
direction. For the degrading mode the material is assumed to lose
its stiffness and strength in the failure direction gradually until the
stress in that direction is reduced to zero.

In this investigation, it is assumed that the post damage modes
are idealized as the brittle behavior for s1 and t12 and the
degrading behavior for s2 (Fig. 2). The following three rules are
used to determine whether the ply failure is caused by matrix
fracture, shear failure, or fiber fracture [2]:

(1) If a ply fails in the condition of Xuc < s1 < Xut,
and �S < t12 < S, the damage is assumed to be matrix
induced. Consequently, the degradation of transverse stiff-
ness occurs. Due to the interlock actionwith the neighboring
plies, the damaged ply gradually loses its capability to sup-
port transverse stress. The lamina remains able to carry the
longitudinal and shear stresses. In this case, the constitutive
matrix of the lamina can be written as

2
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where E22f is a negative tangent modulus in the transverse direc-
tion of the lamina after matrix damage. In the proposed model, the
shear parameter S6666 has a variable value.

(2) If the ply fails in the condition of Xuc < s1 < Xut, and t12� S or
t12 � �S, the damage is assumed to be shear induced.
Consequently, the damaged lamina loses its capability to
support transverse and shear stresses, but remains able to
carry longitudinal stress. In this case, the constitutive matrix
of the lamina becomes

h
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(3) If the ply fails with s1 � Xut, or s1 � Xuc, the ply failure is
caused by fiber fracture and a total ply rupture is assumed.
Thus, the constitutive matrix of the lamina becomes
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3. Laminate governing equations

The forgoing nonlinear failure analysis model for fiber-
reinforced composite lamina can be combined with classical
lamination theory to form the following incremental laminate
forceestrain relations:

DfNg ¼
Xn
i¼1

½Q �itiDfεg (14)
where D{N}¼ D{Nx,Ny,Nxy}T and D{ε}¼ D{εx,εy,gxy}T are the vectors
of the incremental in-plane forces and the incremental strains in
the overall laminate coordinate system (x,y), respectively. The term
ti is the thickness of the i-th layer; n is the total number of layers.
The matrix [Q]i stands for constitutive matrix for the i-th layer and
can be obtained by proper rotation of the ½Q 0

1� matrix of that layer
[2].
4. Numerical analysis

4.1. Verification of the proposed constitutive model

The validity of the proposed constitutive model for composite
laminates subjected to uniaxial tensile load and uniaxial
compressive load has been verified by Lin and Hu [11] and Ke [55].
In this session, the proposed constitutive model is tested against
experimental data [56] of composite laminates subjected to biaxial
loads. The composite laminates are composed of E-glass fiber
(Silenka 051L,1200 tex) and an epoxy resin system (CibaeGeigyMY
750/HY 917/DY 063). It is known that polymer composites do not
have a bi-linear (hardening) behavior when loaded in the longi-
tudinal direction, nor under transverse tension. The proposed
constitutive model can be easily implemented to polymer com-
posites by setting E11e ¼ E11pt ¼ E11pc, E22e ¼ E22pt ¼ E22pc, Xyt ¼ Xut,
Xyc ¼ Xuc, Yyt ¼ Yut, Yyc ¼ Yuc.

For the purpose of verification, the material constants provided
by Soden, Hinton and Kaddour [57] are used in the analyses. They
are listed as follow: E11e ¼ E11pt ¼ E11pc ¼ 45.6 GPa,
E22e ¼ E22pt ¼ E22pc ¼ 16.2 GPa, E22f ¼ �4.02 GPa, G12 ¼ 5.83 GPa,
n12 ¼ 0.278, Xyt ¼ Xut ¼ 1280 MPa, Xyc ¼ Xuc ¼ �800 MPa,
Yyt ¼ Yut ¼ 40 MPa, Yyc ¼ Yuc ¼ �145 MPa, S ¼ 72 MPa. The shear
parameter S6666 is obtained by curve fitting from the pure shear test
data of Soden, Hinton and Kaddour [57] and is shown in Fig. 3. Its
expressions are:

S6666 ¼
8<
:

0 GPa�3; 0 � g12 � 0:006
9724ðg12 � 0:006Þ GPa�3; 0:006 � g12 � 0:007
�3:569þ 1899g12 GPa�3; 0:007 � g12 � 0:04

(15)

The aforementioned nonlinear constitutive model combined
with mixed failure criteria and post damage modes for composite
materials is written into a FORTRAN subroutine and linked to the
Abaqus finite element program [52]. Since the stress field is uni-
form throughout the composite laminate, size effect is not crucial.
The composite laminate in the analysis is shown in Fig. 4 and is
assumed to be simply supported around all edges. The length of the
plate L is equal to 10 cm and thewidth of the plateW is also equal to
10 cm. The composite laminate contains 4 plies with the thickness t
of each ply equal to 0.1 mm. Only one eight-node isoparametric
shell elements with six degrees of freedom per node (three dis-
placements and three rotations) is used to model the entire com-
posite laminate. The reduced integration rule together with
hourglass stiffness control is employed to formulate the element
stiffness matrix [52].

In the Abaqus program, the load control scheme with the
Newton method is used in tracing the loadedisplacement curves of
the laminates [52]. Stresses and strains in material coordinates
(1,2,3) are calculated at each incremental step, and are evaluated by
the failure criteria to determine both the occurrence of failure and
the mode of failure. Mechanical properties of each lamina in the
damaged area are reduced, according to proper degradation
models. Stresses and strains are then recalculated to determine any
additional damage as a result of stress redistribution at the same



Fig. 3. Curve fitting of shear parameter S6666 from the pure shear test data of Soden,
Hinton and Kaddour [36].

Fig. 5. Failure envelopes of biaxial stresses for [±55]s composite laminate.
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load. This procedure continues until no additional damage is found.
Then, the next increment of load is pursued. The final collapse load
is determined when the composite plates can not sustain any
additional load.

Fig. 5 shows the failure envelopes of biaxial stresses for [±55]s
composite laminate predicted by the proposed material model,
Edge model [3], Liu and Tsai model [5], and Sun and Tao model [6]
against the experimental data [56]. For the biaxial tension zone, it
can be seen that the failure envelope predicted by the proposed
model is closer to the experimental data than the remaining
models. For the biaxial tension-compression zones except the Liu
and Tsai model, the failure envelopes predicted by the remaining
models are close together and have reasonably good agreement
with the test data. For the biaxial compression zone, there are no
experimental data available. However, we know that the failure
envelope in the biaxial compression zone should be similar and
smaller to that in the biaxial tension zone. This is due to
Xuc(�800 MPa) of the lamina is smaller than Xut(1280 MPa) of the
Fig. 4. Geometry and boundary conditions of composite laminates.
same lamina in magnitude. In the biaxial compression zone, we can
see that the failure envelopes predicted by the proposed model and
the Sun and Tao model are very close to each other.

It is known that there are many factors that influence the
experimental results and that can not be all simulated in the nu-
merical model. From the aforementioned discussion, it can be
concluded that the proposed material model can predict the biaxial
failure stresses of composite laminates with reasonably good
accuracy.
4.2. Composite laminates with symmetric angle-ply subjected to
biaxial compression

In this section, composite laminates with symmetric angle-ply
[±q]s subjected to biaxial compressions are investigated, where
q ¼ 0�, 15�, 30�, 45�. Let the variable SR represent the stress ratio
between sx and sy, i.e. SR ¼ sx/sy. Typical loading paths of com-
posite laminates for various SR ratios are shown in Fig. 6. Fig. 7
shows the stress and strain relations for [±0]s composite lami-
nates subjected to biaxial compressions. From Fig. 7, it can be seen
Fig. 6. Typical loading paths of composite laminates for various SR ratios.



Fig. 7. Stressestrain curves of [±0]s composite laminates subjected to biaxial
compressions.
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that when SR ¼ �1/0, �1/�0.04 and �1/�0.1, the stressestrain
curves of the [±0]s laminates are quite linear. The failure modes of
these laminates are all fiber compressive failures and the ultimate
strengths of these laminates are very close to Xuc(�800 MPa).
When SR ¼ �1/�0.2, �1/�0.5 and �1/�1, the stressestrain curves
of the laminates are also quite linear in the x direction but exhibit
nonlinear behavior in the y direction. The failure modes of these
laminates change from fiber compressive failure (SR ¼ �1/�0.2),
combined fiber and matrix failure (SR ¼ �1/�0.5) to matrix failure
in compression (SR ¼ �1/�1). The ultimate strengths of these
laminates are reduced with the increase of the magnitude of the
compressive stress sy.

Fig. 8 shows the stress and strain relations for [±15]s composite
laminates subjected to biaxial compressions. When SR ¼ �1/0, the
failure mode of the laminate is a combined fiber, matrix and shear
failure. When SR ¼ �1/�0.04 and �1/�0.1, the failure modes of
these laminates are combined fiber and shear failures. This is due to
Fig. 8. Stressestrain curves of [±15]s composite laminates subjected to biaxial
compressions.
the increase of the in-plane shear in those laminates. In these stress
ratio regions, the stressestrain curves of the laminates are quite
linear and the ultimate strengths of the laminates increase with the
increase of the magnitude of compressive stress sy. When SR ¼�1/
�0.2, �1/�0.5 and �1/�1, the transverse stress in the matrix be-
comes more significant in the laminate. Hence, the failure modes of
these laminates become matrix failures in compression. As a result,
the ultimate strengths of these laminates reduce with the increase
of the magnitude of compressive stress sy. The stressestrain curves
of these laminate are also quite linear in the x direction but exhibit
nonlinear behavior in the y direction.

Fig. 9 shows the stress and strain relations for [±30]s composite
laminates subjected to biaxial compressions. When SR ¼ �1/0, �1/
�0.04 and �1/�0.1, the matrixes of the laminates fail in compres-
sion first which is called initial failure. Although, the transverse
stresses in the matrixes are gradually reduced (Fig. 2d), these
laminates can still resist the biaxial loads until the in-plane shear
failure occurs, which is termed a final failure. When SR ¼ �1/�0.3,
there is no initial failure. The (final) failuremode of the laminate is a
combined fiber and shear failure. When SR ¼ �1/�0.33 and �1/
�0.5, the initial failures of the laminates occur due to matrix failure
in compression. The final failures of the laminates occur when the
fibers also fail in compression. When SR ¼ �1/�1, the initial failure
of the laminate occurs due to matrix failure in compression. The
final failure of the laminate occurs when the transverse stress in the
matrix is reduced to zero (Fig. 2d). From this figure, we can observe
that when SR is between �1/0 and �1/�0.33, the ultimate
strengths of the laminates increase with the increase of the
magnitude of compressive stress sy. However, when SR is
between �1/�0.33 and �1/�1, the ultimate strengths of the lam-
inates decrease with the increase of the magnitude of compressive
stress sy. The stressestrain curves of these laminates exhibit highly
nonlinear behavior in the y direction due to the nonlinear shear
effect.

Fig. 10 shows the stress and strain relations for [±45]s composite
laminates subjected to biaxial compressions. When SR ¼ �1/
0 and �1/�0.1, there is no initial failure. The (final) failure mode of
the laminate is due to shear failure. When SR ¼ �1/�0.5, the initial
failure of the laminate occurs due to matrix failure in compression.
The final failure of the laminate occurs when the shear failure takes
place. When SR ¼ �1/�1, the initial failure of the laminate occurs
Fig. 9. Stressestrain curves of [±30]s composite laminates subjected to biaxial
compressions.



Fig. 10. Stressestrain curves of [±45]s composite laminates subjected to biaxial
compressions. Fig. 12. Stressestrain curves of [±0]s composite laminates subjected to biaxial tension

and compression.
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due to matrix failure in compression. The final failure of the lami-
nate occurs when the fiber fails in compression too. From this
figure, we can observe that the ultimate strengths of the laminates
increase with the increase of the magnitude of compressive stress
sy. The stressestrain curves of these laminates exhibit highly
nonlinear behavior both in the x and y directions. The reason is that
the nonlinear in-plane shear effect is the most significant in [±45]s
laminates than in other laminates.

Fig. 11 shows the failure stress sxf in the x direction versus the
fiber angle q for composite laminates with [±q]s layup. It can be
seen that the optimal fiber angle of the laminate change from 0� to
90�, as the SR ratio changes from �1/0 to �1/�25. Generally, the
optimal fiber angle increases with the increase of the magnitude of
compressive stress sy. For example, when SR ¼ �1/0, the optimal
angle is 0�. When SR ¼ �1/�1, the optimal angle is 45�. When
SR ¼ �1/�25, the optimal angle is 90�. When q ¼ 0� or
75� � q � 90�, the failure stress decreases with the increase of the
Fig. 11. Failure stress sxf versus angle q for [±q]s composite laminates subjected to
biaxial compressions with various SR ratios.
magnitude of compressive stress sy. When 5� � q � 70�, the failure
stress depends on the SR ratio significantly.

4.3. Composite laminates with symmetric angle-ply subjected to
biaxial tension and compression

In this section, composite laminates with symmetric angle-ply
[±q]s subjected to biaxial tension and compression are investi-
gated. Typical loading paths of composite laminates for various SR
ratios are shown in Fig. 6. Fig. 12 shows the stress and strain re-
lations for [±0]s composite laminates. It can be seen that all the
stressestrain curves of the laminates with different SR ratios
exhibit linear behavior both in the x and y directions. In addition,
there are no initial failures for all the laminates. When SR ¼ �1/0,
the (final) failure of the laminate is caused by fiber failure in
compression. When SR ¼ �1/0.05, the failure mode of the laminate
is a combined fiber and matrix failure. As the SR ratio is gradually
Fig. 13. Stressestrain curves of [±15]s composite laminates subjected to biaxial tension
and compression.



Fig. 15. Stressestrain curves of [±45]s composite laminates subjected to biaxial tension
and compression.
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changed toward SR ¼ �1/1, the failure modes of the laminates also
change toward the matrix failure in tension. This is because the
ultimate tensile strength of the matrix Yut(40 MPa) is much lower
than the ultimate compressive strength of the fiber Xuc(�800 MPa)
in magnitude. Finally, we can observe that the ultimate strengths of
the laminates decrease with the increase of the magnitude of
tensile stress sy.

Fig. 13 shows the stress and strain relations for [±15]s composite
laminates subjected to biaxial tension and compression.We can see
that Fig. 13 is similar to Fig. 12. All the stressestrain curves of the
laminates with different SR ratios exhibit linear behavior both in
the x and y directions. The ultimate strengths of the laminates
decrease with the increase of the magnitude of tensile stress sy. In
addition, there are no initial failures for all the laminates. The only
differences are the failure modes. Due to the fiber angles ±15�, in-
plane shear stresses develop in these laminates. Hence, when
SR¼�1/0.05 and�1/0.1, the failures of the laminates change to the
combined fiber, matrix and shear failure.

Fig. 14 shows the stress and strain relations for [±30]s composite
laminates subjected to biaxial tension and compression. Again, the
ultimate strengths of the laminates decrease with the increase of
the magnitude of tensile stress sy. For all the laminates, initial
failures take place when the matrixes fail in tensions. These lami-
nates can still resist further loadings but start to exhibit highly
nonlinear behaviors due to the nonlinear in-plane shear effect.
Final failures of all the laminates occur when the in-plane shear
stresses exceed the ultimate strength S (72 MPa).

Fig. 15 shows the stress and strain relations for [±45]s composite
laminates subjected to biaxial tension and compression. Since the
failures of these laminates are governed by the in-plane shear
stress, there are no initial failures for all the laminates. Hence, final
failures of these laminates are caused by the in-plane shear failures.
Due to the nonlinear in-plane shear effect, these laminates exhibit
highly nonlinear behaviors. Again, the ultimate strengths of the
laminates decrease with the increase of the magnitude of tensile
stress sy.

Fig. 16 shows the failure stress sxf in the x direction versus the
fiber angle q for composites with a [±q]s layup. It can be seen that
the optimal fiber changes from 0� to 90�, as the SR ratio changes
from �1/0 to �1/20. In addition, the failure stress decreases with
the increase of the magnitude of tensile stress sy. This decrease of
Fig. 14. Stressestrain curves of [±30]s composite laminates subjected to biaxial tension
and compression.
the failure stress in magnitude is more significant for small angles
(say 0� � q � 15�) than that for large angles (say 75� � q � 90�).

4.4. Failure envelopes of biaxial stresses for composite laminates
with symmetric angle-ply

The stressestrain curves and failure patterns of the composite
laminates with symmetric angle-ply [±q]s subjected to biaxial
tensions are similar to those of the laminates subjected to biaxial
compressions as discussed in Section 4.2. Hence, they are not
duplicated here. However, it should be noted that the ultimate
strengths of the laminates subjected to biaxial tensions are larger
than those of the same laminates subjected to biaxial compressions
due to Xut(1280 MPa) of the lamina being larger than
Xuc(�800 MPa) of the same lamina in magnitude.

Finally, the failure envelopes of biaxial stresses for composite
laminates with symmetric angle-ply [±q]s are given in Fig. 17. It can
Fig. 16. Failure stress sxf versus angle q for [±q]s composite laminates subjected to
biaxial tension and compression with various SR ratios.



Fig. 17. Failure envelopes of biaxial stresses for [±q]s composite laminates. Fig. 19. Stressestrain curves of [15/75]s composite laminates subjected to biaxial
compressions.
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be seen that the area enclosed by each failure envelope is about the
same. In addition, the longitudinal axial of the failure envelope
rotates from 90� to 45� when the angle q changes from 0� to 45�.
Finally, these failure envelopes have a symmetric line of 45�. For
example, the failure envelope of [±35]s composite laminate is
symmetric to that of [±55]s composite laminate.

4.5. Composite laminates with symmetric cross-ply subjected to
biaxial compressions

In this section, composite laminates with symmetric cross-ply
[q/(q�90)]s subjected to biaxial compressions are investigated,
where q ¼ 0�, 15�, 30�, 45�. Typical loading paths of composite
laminates for various SR ratios are shown in Fig. 6. Fig. 18 shows the
stress and strain relations for [0/90]s composite laminates. When
SR ¼ �1/0 and �1/�0.5, the matrixes of the laminae with 90� fiber
angle fail first due to the compression in the x direction, which is
called the initial failure. When the loads are continuously
Fig. 18. Stressestrain curves of [0/90]s composite laminates subjected to biaxial
compressions.
increased, the matrixes of the laminae with 0� fiber angle also fail
due to the compression in the y direction, which is called inter-
mediate failure. Final failures of the laminates occur when the
laminae with 0� fiber angle reach the ultimate compressive
strength of the fiber. When SR¼�1/�1, initial compressive failures
take place at the matrixes of the laminae with 0� and 90� fiber
angles simultaneously. Final failures of the laminate occur when
the laminae with 0� and 90� fiber angles reach the ultimate
compressive strength of the fiber simultaneously. It can be seen
that the ultimate strengths of these laminates are independent of
the SR ratio. The stressestrain curves of these laminates exhibit
slightly nonlinear behavior after the intermediate failure occurs.
This nonlinearity is due to the stress in the matrix being in the
descending portion (Fig. 2d).

Fig. 19 shows the stress and strain relations for [15/�75]s com-
posite laminates subjected to biaxial compressions. The stresse-
strain relations and failure patterns of [15/�75]s laminates are very
Fig. 20. Stressestrain curves of [30/�60]s composite laminates subjected to biaxial
compressions.



Fig. 22. Stressestrain curves of [0/90]s composite laminates subjected to biaxial ten-
sion and compression.
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similar to those of [0/90]s laminates. Fig. 20 shows the stress and
strain relations for [30/�60]s composite laminates subjected to
biaxial compressions. When SR ¼ �1/0 and �1/�0.5, initial
compressive failures occur at the matrixes of the laminae with
a �60� fiber angle. Then intermediate compressive failures occur at
the matrixes of the laminae with 30� fiber angle. The final failures
occur when the in-plane shear stresses in the laminae with 30�

and �60� fiber angles exceed the ultimate strength S (72 MPa)
simultaneously. When SR ¼ �1/�1, initial compressive failures
occur at the matrixes of the laminae with 30� and�60� fiber angles
simultaneously. Final failures of the laminate occur when the
laminae with 30� and�60� fiber angles reach the ultimate in-plane
shear strength simultaneously. It can be seen that the ultimate
strengths of these laminates increase with the increase of the
magnitude of compressive stress sy. The stressestrain curves of
these laminates exhibit highly nonlinear behavior after the initial
failure occurs. This nonlinearity is due to the nonlinear in-plane
shear effect. The last composite laminate in analysis has the [45/
�45]s layup. It is the same laminate as the [±45]s composite
laminate discussed in Section 4.2 and the stressestrain curves of
the laminate with various SR ratios are already shown in Fig. 10.

Fig. 21 shows the failure stress sxf in the x direction versus the
fiber angle q for composite laminates with [q/(q�90)]s layup. It can
be seen that all the curves are symmetric to a vertical line at q¼ 45�.
When 0� � q � 45�, the failure stress usually decreases with the
increase of the fiber angle q. The exceptions are the curves with
SR¼�1/�1 and�1/�1.5. It should be noted that when SR¼�1/�1,
the stresses in the laminates are in a quasi-isotropic condition.
Hence, it is not surprising to find that its failure stress is a constant
for all angles q. From this figure, we also observe that when SR
changes from �1/0 to �1/�1, the failure stress increases with the
increase of the magnitude of compressive stress sy. However, when
SR changes from�1/�1 to�1/�10, the failure stress decreases with
the increase of the magnitude of compressive stress sy.
4.6. Composite laminates with symmetric cross-ply subjected to
biaxial tension and compression

In this section, composite laminates with symmetric cross-ply
[q/(q�90)]s subjected to biaxial tension and compression are
Fig. 21. Failure stress sxf versus angle q for [q/(q�90)]s composite laminates subjected
to biaxial compressions with various SR ratios.
investigated. Typical loading paths of composite laminates for
various SR ratios are shown in Fig. 6. Fig. 22 shows the stress and
strain relations for [0/90]s composite laminates. It can be seen that
all the stressestrain curves of the laminates with different SR ratios
exhibit almost linear behavior both in the x and y directions. When
SR ¼ �1/0, initial compressive failure occurs at the matrix of the
lamina with a 90� fiber angle. Then intermediate compressive
failure takes place at the matrix of the lamina with a 0� fiber angle.
Final failure of the laminate occurs when the lamina with a 0� fiber
angle reach the ultimate compressive strength of the fiber. When
SR ¼ �1/0.5 and �1/1, the initial tensile failures occur at the ma-
trixes of the laminae with a 0� fiber angle. Then intermediate
compressive failures take place at the matrixes of the laminae with
a 90� fiber angle. Final failures of the laminates occur when the
laminae with a 0� fiber angle reach the ultimate compressive
strength of the fiber. It can be seen that the ultimate strengths of
these laminates are independent on the SR ratio.
Fig. 23. Stressestrain curves of [15/�75]s composite laminates subjected to biaxial
tension and compression.



Fig. 25. Failure stress sxf versus angle q for [q/(q�90)]s composite laminates subjected
to biaxial tension and compression with various SR ratios.
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Fig. 23 shows the stress and strain relations for [15/�75]s
composite laminates subjected to biaxial tension and compression.
It should be noted that all the failure modes of the [15/�75]s
composite laminates are similar to those of the [0/90]s composite
laminates for various SR ratios. We can see that Fig. 23 is similar to
Fig. 22. All the stressestrain curves of the laminates with different
SR ratios exhibit linear behavior both in the x and y directions
before the initial failures occur. However, after the initial failures
occur, these stressestrain curves exhibit slightly nonlinear
behavior, which is due to the nonlinear shear effect. Again, the
ultimate strengths of the laminates decrease with the increase of
the magnitude of tensile stress sy.

Fig. 24 shows the stress and strain relations for [30/�60]s
composite laminates subjected to biaxial tension and compression.
Again, the ultimate strengths of the laminates decrease with the
increase of the magnitude of tensile stress sy. When SR ¼ �1/0,
initial compressive failure occurs at the matrix of the lamina with
a�60� fiber angle. Then intermediate compressive failure occurs at
the matrix of the lamina with a 30� fiber angle. The final failures
occur when the in-plane shear stresses in the laminae with 30�

and �60� fiber angles exceed the ultimate strength S (72 MPa)
simultaneously. When SR ¼ �1/0.5 and �1/1, the initial compres-
sive failures of the laminates occur at the matrixes of the laminae
with a 30� fiber angle. Then intermediate compressive failures
occur at the matrixes of the laminae with a �60� fiber angle. The
final failures occur when the in-plane shear stresses in the laminae
with 30� and �60� fiber angles exceed the ultimate strength S at
the same time. Since the nonlinear in-plane shear effect is more
significant, the stressestrain curves of these laminates exhibit more
nonlinear behaviors than those of [15/�75]s laminates (Fig. 23). The
last composite laminate in analysis has the [45/�45]s layup. It is the
same laminate as the [±45]s composite laminate discussed in Sec-
tion 4.3 and the stressestrain curves of the laminate with various
SR ratios are already shown in Fig. 15.

Fig. 25 shows the failure stress sxf in the x direction versus the
fiber angle q for composite laminates with [q/(q�90)]s layup. It can
be seen that all the curves are symmetric to a vertical line at q¼ 45�.
When 0� � q � 45�, the failure stress decrease with the increase of
the fiber angle q. From this figure, we also observe that the failure
stress decrease with the increase of the magnitude of tensile stress
sy.
Fig. 24. Stressestrain curves of [30/�60]s composite laminates subjected to biaxial
tension and compression.
4.7. Failure envelopes of biaxial stresses for composite laminates
with symmetric cross-ply

The stressestrain curves and failure patterns of the composite
laminates with symmetric cross-ply [q/(q�90)]s subjected to biaxial
tensions are similar to those of the laminates subjected to biaxial
compressions as discussed in Section 4.5. Hence, they are not
duplicated here. Again it should be noted that the ultimate
strengths of the laminates subjected to biaxial tensions are large
than those of the same laminates subjected to biaxial
compressions.

Finally, the failure envelopes of biaxial stresses for composite
laminates with symmetric cross-ply [q/(q�90)]s are given in Fig. 26.
It can be seen that all the failure envelopes pass through the same
two points, in which SR ¼ 1/1 and �1/�1. In addition, each failure
envelope is symmetric to the line of 45� by itself. Finally, the area
enclosed by the failure envelope decreases as the angle q increases.
This means that the [0/90]s laminate can resist more wide combi-
nations of sx and sy without failure than the [15/�75]s, [30/�60]s
and [45/�45]s laminates.

5. Conclusions

This paper presents a material constitutive model suitable for
the failure analysis of composite laminates under biaxial loads. The
validity of the constitutive model has been verified against the
experimental data [56] and reasonable accuracy has been achieved.
Based on the numerical analyses of symmetric angle-ply composite
laminates and symmetric cross-ply composite laminates subjected
to biaxial loads, the following conclusions could be made:

1. For composite laminates with symmetric angle-ply [±q]s sub-
jected to biaxial compressions, the optimal fiber angle of the
laminate change from 0� to 90�, as the SR ratio changes from�1/
0 to �1/�25. When q ¼ 0� or 75� � q � 90�, the failure stress
decreases with the increase of the magnitude of the compres-
sive stress sy. When 5� � q � 70�, the failure stress depends on
the SR ratio significantly.

2. For composite laminates with symmetric angle-ply [±q]s sub-
jected to biaxial tension and compression, the optimal fiber
angle changes from 0� to 90�, as the SR ratio changes from �1/



Fig. 26. Failure envelopes of biaxial stresses for [q/(q�90)]s composite laminates.
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0 to �1/20. The failure stress decreases with the increase of the
magnitude of the tensile stress sy. This decrease of the failure
stress in magnitude is more significant for small angles (say
0� � q � 15�) than that for large angles (say 75� � q � 90�)

3. For composite laminates with symmetric angle-ply [±q]s sub-
jected to biaxial stresses, the area enclosed by each failure en-
velope is about the same. The longitudinal axial of the failure
envelope rotates from 90� to 45� when the fiber angle q changes
from 0� to 45�. In addition, these failure envelopes have a
symmetric line of 45�. For example, the failure envelope of
[±35]s composite laminate is symmetric to that of [±55]s com-
posite laminate.

4. For composite laminates with symmetric cross-ply [q/(q�90)]s
subjected to biaxial compressions, all the curves of failure stress
versus fiber angle q are symmetric to a vertical line at q ¼ 45�.
When 0� � q � 45�, the failure stress usually decreases with the
increase of the fiber angle q. The exceptions are the curves with
SR ¼ �1/�1 and �1/�1.5. When the SR ratio changes from �1/
0 to �1/�1, the failure stress increases with the increase of the
magnitude of compressive stress sy. However, when SR changes
from �1/�1 to �1/�10, the failure stress decreases with the
increase of the magnitude of compressive stress sy.

5. For composite laminates with symmetric cross-ply [q/(q�90)]s
subjected to biaxial tension and compression, all the curves of
failure stress versus fiber angle q are symmetric to a vertical line
at q ¼ 45�. When 0� � q � 45�, the failure stress decrease with
the increase of the fiber angle q. In addition, the failure stress
decrease with the increase of the magnitude of tensile stress sy.

6. For composite laminates with symmetric cross-ply [q/(q�90)]s
subjected to biaxial stresses, each failure envelope is symmetric
to the line of 45� by itself. In addition, the area enclosed by the
failure envelope decreases as the fiber angle q increases.
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