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Abstract: A constitutive law is offered for an AZ31B-H24 Mg alloy within a strain rate range of 10−5−10−2 s–1 at a temperature of 
400 °C. The constitutive law, which is developed by curve fitting the tensile tests data, is expressed as a flow stress function of strain 
and strain rate. Furthermore, the constitutive law is embedded into a proper FE model to simulate the tensile experiments for the 
purpose of verifying reliability, where the incremental stress−strain relationships are calculated by an elastic-plastic theory in the 
finite element analysis (FEA). The results show that the stress−strain characteristics and the final deformed shapes in the FEA agree 
well with the experiments. In addition, the predicting analysis of constant-velocity stretch conditions and the verification of a free 
bulge forming experiment show that the proposed FE model is practicable for mechanical analysis on superplastic forming problems. 
A selective numerical method is offered for advanced superplastic analysis on AZ31 Mg alloys. 
Key words: AZ31 magnesium alloy; constitutive law; finite element verification 
                                                                                                             
 
 
1 Introduction 
 

The most attractive characteristic of Mg is that it 
exhibits the lightest density (1.738 g/cm3) among metal 
materials, which is about a quarter of iron (7.87 g/cm3), 
and two third of that of aluminum (2.7 g/cm3) [1]. 
Components that are made of Mg alloys have better 
characteristics with regard to high specific strength and 
stiffness, good casting ability, machinability, and 
dimensional stability, high recyclability, and superior 
damping capacity [2]. These advantages make Mg and its 
alloys increasingly play an important role in automotive, 
aircraft, and 3C products [3−5]. 

Due to the intrinsic hexagonal close-packed (HCP) 
crystallographic structure of Mg alloys, a limited 
activation of slip planes at room temperature is available, 
so they exhibit only limited ductility and accommodation 
ability. This obviously limits the engineering 
applications of Mg alloys. Mg alloys are much more 
workable at elevated temperatures, as additional slip 
systems become available [6]. AZ31 alloy is a 
commercially available commonly used Mg alloy and 
has been proven to have a good superplastic property at a 
temperature range of 200−450 °C [7−10]. Other than 

casting, the typical wrought forming processes that 
utilize the superplastic characteristic of Mg alloys 
encompass extrusion, rolling of sheet and plate, forging, 
stamping and blowing processes [3]. Superplastic 
forming (SPF) is a near-net-shape forming process that 
permits parts with complex shapes to be formed in a 
single formation operation, and it has precise accuracy 
with regard to dimensions. Furthermore, the cost of 
manufacturing a structure using SPF can be 50% less 
than a structure assembled from numerous parts and 
fasteners. However, SPF processes require an inefficient 
amount of trial and error in regard to deciding the 
temperature and pressure parameters to form a suitable 
part [11]. The challenge is to obtain a systematic and 
more efficient method that can develop optimum forming 
parameters to reduce the formation time and maintain the 
integrity of the formed part. Therefore, a number of 
numerical analyses have been developed, but the finite 
element method (FEM), due to its generality, has 
emerged as the most potent technique for modelling SPF 
processes. 

A material model that can precisely characterize a 
material’s behavior is a prerequisite and key challenge 
for a reliable mechanical FEA. The SPF process for 
AZ31 mg alloys is a deformation process which takes 
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place at elevated temperatures, and the flow stress is 
closely dependent on parameters related to strain, strain 
rate, temperature, activation energy, the strain hardening 
coefficient, and the strain rate sensitivity index. These 
parameters finally reflect the trend upon a material’s 
constitutive stress−stain relationship. There are two 
viewpoints that are used to describe the constitutive law 
of AZ31 Mg alloys at elevated temperatures. One is 
based on a microstructure deformation mechanism. This 
method builds up the evolution rules of parameters 
which affect the constitutive law based on 
mathematically modelling the texture changes in grain 
size, void ratios, crystal lattice, dynamic recrystallization 
and slip and twinning systems. Then, the constitutive law 
is assembled with these rules. The other is based on 
describing the macroscopic mechanical behavior of 
deformation i.e., the flow stress curve. This method 
directly establishes the evolution rules for parameters 
that affect stress−strain relationships based on a 
regression analysis of experimental data [12]. Among 
them, the method based on the microstructure’s 
viewpoint has to determine the texture change 
mechanisms that affect the parameters of the constitutive 
law; then, tests must be designed to quantify and develop 
the evolution rules, which are finally assembled to form 
the constitutive law. In this field, LIU et al [12], 
ABU-FARHA and KHRAISHEH [13], ZHANG et al 
[14], WALDE and RIEDEL [15], and CHOI et al [16] 
built some constitutive models for AZ31 Mg alloys, and 
each has an applicable range of temperature and strain 
rate under either tensile or compressive conditions. 
However, the involved microstructure mechanisms that 
lead to material deformation may be multiple and may 
also complicatedly interact with each other. Whether the 
constitutive law that considers the primary texture 
mechanisms is reliable or not has to be verified by 
comparing the stress−strain relationships between the 
building model and the experimental results. On the 
other hand, the constitutive law developed based on the 
macroscopic viewpoint mostly uses the uniaxial 
stress−strain data of tensile or compressive tests. In this 
method, tests are designed to quantify the influence of 
parameters on stress−strain relationships, and then the 
results are transformed into mathematical evolution rules 
through regressive analyses. This method is 
comparatively convenient and controllable since the 
evolution rules of parameters directly feed-back their 
effects on the flow stress trends. In this manner, WANG 
et al [17], ZHANG et al [18], TAKUDA et al [19,20], 
and NGUYEN et al [21] developed several flow stress 
equations as the constitutive law of AZ31 Mg alloys, and 
each also has its own applicable requirements. Among 
these, Refs. [12,13,17−20] only compared the 
consistency of stress−strain relationships between their 

models and their experimental results; however, they 
didn’t embed their models into any FE simulation to 
verify their reliability. NGUYEN et al [21] used the least 
squares curve fitting method to establish a constitutive 
model of an AZ31B Mg alloy, but his model failed to 
characterize the softening behavior of the material. 

Before a constitutive law of superplastic materials 
such as AZ31 Mg alloy is applied to a mechanical 
simulation of manufacturing processes, it is necessary to 
perform the FEA, which simulates the original uniaxial 
test for the purpose of verifying reliability. In this work, 
a constitutive law for an AZ31B-H24 Mg alloy was 
developed through the use of curve fitting the uniaxial 
tensile test data that was performed by ABU-FARHA 
and KHRAISHEH [8]. The built constitutive law was 
embedded in an FE model to formulate the stress−strain 
relationships of the AZ31B-H24 Mg alloy. During the 
FEA, the mechanical plastic flow evolution was 
formulated using an elastic-plastic model, which 
calculated the elastic behavior using Hooke’s law and the 
subsequent work hardening behavior by combining the 
associated von-Mises flow rule with the isotropic 
hardening rule. The aim of this work is to develop a 
reliable constitutive law of an AZ31B-H24 Mg alloy and 
to construct an adequate FE model for the purpose of 
verifying a specific stress−strain progress of a material. 
Moreover, some additional constant-strain-rate and 
constant-velocity stretching cases that were not carried 
out by the uniaxial tensile experiments as well as a free 
bulge forming experiment were also simulated to prove 
the practicability of the proposed constitutive law. 
 
2 Geometry of uniaxial tensile test samples 
 

The presented FE model was verified with the 
tensile test experiments conducted by ABU-FARHA et al 
[8,22] on an AZ31B-H24 Mg alloy. High temperature 
uniaxial tensile tests were carried out using the 
INSTRON 5582 universal testing machine, which was 
equipped with an electrical resistance heating chamber 
(furnace) that provides a maximum temperature of 610 
°C and with a 5 kN capacity load cell that was used for 
load measurements. The material used in the experiments 
was commercially available AZ31B-H24 Mg alloy 
sheets, with a thickness of 3.22 mm and an average 
initial grain size of about 5 μm. The sheets were used to 
prepare the tensile test samples into the shape of a dog 
bone, whose middle gauge region had an approximate 
cross section of 6.35 mm×3.22 mm and a length of 19.05 
mm. The constant-strain-rate uniaxial tensile tests were 
conducted within a forming temperature range of 
325−500 °C, in 25 °C increments, where the true strain 
rate varied between 2×10–5 and 10–2 s–1. However, only 
the datum for 400 °C, as an optimum superplastic 
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formation temperature for the AZ31 Mg alloy [13], is 
adopted to form the constitutive law in this study. A 
constant-strain-rate test considers the total length of a 
tensile sample during the test, and it controls the 
stretching velocity to deform a sample under a constant 
strain rate status. Hence, the stretching velocity is a 
function of testing time, the sample’s initial length and 
the controlled strain rate. This velocity function can be 
calculated first and set up into the testing machine’s auto 
control system. The stress−strain relationships of the 
nine experimental constant-strain-rate tests are shown in 
Fig. 1, which indicates that the ductility increases with 
lower strain rates, and the corresponding final deformed 
samples are depicted in Fig. 2. 
 

 
Fig. 1 Stress−strain characteristics of tensile tests for 
AZ31B-H24 magnesium alloy under various constant-strain- 
rate conditions at 400 °C (Reproduced with permission from 
Ref. [22]. 2007 American Institute of Physics) 
 

 

Fig. 2 Photograph of ultimately deformed tensile test samples 
for AZ31B-H24 magnesium alloy under various constant- 
strain-rate conditions at 400 °C (Reproduced with permission 
from Ref. [8]. 2007 ASM International) 
 
3 Constitutive law 
 

Figure 1 represents the experimental data at a 
temperature of 400 °C. If the effect of temperature is not 

included, the major macroscopic factors that affect the 
flow stress are strain and strain rate. As shown in this 
figure, the stress increased with larger strain rates at the 
same strain, and the ultimate fracture strain decreased 
with a larger strain rate, in which the characteristic 
became more brittle; moreover, a different degree of 
strain hardening or softening behavior was exhibited in 
every stress−strain curve. In this work, we analyzed the 
stress−strain relationships in Fig. 1 based on curve fitting 
methods to develop the constitutive law, which was 
expressed as a flow stress function of strain and strain 
rate. The applicable range of the strain rate within the 
constitutive law was varied between 10–5 and 10–2 s–1 and 
then the developed constitutive law was verified by 
following the FEA on the tensile experiments, which 
were mentioned in Section 2. As a result, the developed 
constitutive law of flow stress equations is expressed as 
the following σ-transformed polynomials: 
 

5.0
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where σ, ε and ε&  are variables of true stress, true strain 
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natural logarithm of σ; constant  
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value of initial yielding stress for each corresponding 
strain rate condition in Fig. 1. Parameters )(ε&A , )(ε&B , 

)(ε&C  obtained by curve fitting methods are all functions 
of the strain rate and can be expressed as follows: 
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where ε&ln  is the natural logarithm of ε& , and exp( ε& ) 
denotes the exponential function to the power of ε& . 
 
4 Incremental stress−strain relationships 
 

The materials studied in this work were 
AZ31B-H24 Mg alloy plates manufactured using a 
rolling process, which exhibited an initial anisotropy 
between the RD (rolling direction) and the TD 
(transverse direction) at room temperature. However, it 
has also been observed that this anisotropic characteristic 
decreases constantly with rising temperature and 
becomes unobservable at 250 °C [8,23]. Since the 
proposed constitutive law of the AZ31B-H24 Mg alloy 
would be verified by FE simulation on tensile tests at a 
temperature of 400 °C in this study, we assumed the 
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material to be homogeneous and isotropic for the 
subsequent numerical analyses. Hence, the mechanical 
theory chosen to calculate the incremental stress−strain 
relationships was an elastic−plastic model, for which the 
elastic behavior was formulated using Hooke’s law, and 
the work hardening plastic stress−strain relationships 
were calculated by combining the flow rule associated 
with the von Mises quadratic yield criterion with the 
isotropic hardening rule. According to the theory of 
plasticity, the relative equations of the elastic−plastic 
model can be derived as follows [24]. 

The total strain increment is decomposed into two 
parts,  

pe ddd ijijij εεε +=                               (5) 
 
where the elastic strain increment, ed ijε , is related to the 
stress increment; dσij, by the generalized Hooke’s law as 
 

edd klijklij C εσ =                                (6) 
 
while Cijkl is the tensor of the elastic modulus. For a 
linear-elastic isotropic material,  Cijkl can be expressed 
in terms of the two elastic constants: shear modulus, G, 
and Poisson ratio, v: 
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The plastic strain increment, pd ijε , can be generally 
expressed by a nonassociated flow rule in the form: 
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where dλ is a positive scalar factor of proportionality, 
which is nonzero only when plastic deformations occur; 
g is known as the plastic potential function. The equation 

),,( p kg ijij εσ =constant defines a surface of plastic 
potential in a nine-dimensional stress space. When the 
yield function and the plastic potential function coincide, 
f=g; the plastic flow equations can be expressed as 
follows: 
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Equation (9) is called the associated flow rule 

because the plastic flow is associated with the yield 
criterion. The loading surface, which defines the 
boundary of the current elastic region, is the subsequence 
yield surface for an elastoplastically-deformed material 
under combined states of stress, and it can generally be 
written as 
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The size of the yield surface is governed by the 

hardening parameter k2 expressed as a function of εp, 
called the effective strain. Hence, the parameter k2 

depends upon the plastic strain history. The function 
),( p

ijijF εσ  defines the shape of the yield surface. 
Moreover, for a work hardening material, a hardening 
rule to describe the rule for the evolution of the loading 
surface is necessary. Since we assumed the analyzed 
material to be isotropic, we took the von Mises yield 
function as the plastic potential and the isotropic 
hardening rule, which expanded the initial yield surface 
uniformly without distortion and translation, as the 
evolution of the loading surface. When the von Mises 
yield criterion is used, we obtain 
 

2
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with J2 expressed in the following as the invariant of the 
stress deviator tensor: 
 
J2=sijsij/2                                                     (12) 
 
Then Eq. (10) becomes 
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where sij denotes the stress deviator tensor defined by 
subtracting the spherical state of stress from the actual 
state of stress. 
 
sij=σij−σkkδij/3                                               (14) 
 

For practical use of the work-hardening theory of 
plasticity, the hardening parameters in the loading 
function have to be related to the experimental uniaxial 
stress−strain curve. To this end, the stress variable σe, 
called the effective stress, and the strain variable εp, 
called the effective strain, are introduced. Since the 
effective stress should reduce to stress σ1 in the uniaxial 
test, it follows that the loading function F(σij) can be 
expressed as n

ij CF e)( σσ = . For the von-Mises material, 
2

p ),( JF ijij =εσ , then 
 

nCJ e2 σ=                                   (15) 
 
and for the uniaxial test, σe=σ1 and σ2=σ3=0. Therefore, 
n=2; C=1/3, and 
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To replace the hardening parameter k with σe, we 
substitute Eq. (16) into Eq. (13) and rewrite it as 
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From the definition of the associated flow rule, g=f, 
the derivatives of g and f are found as 
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scalar function to be determined by the consistency 
condition df=0 as  

klklklijkl
ij

H
h

Cf
h

εε
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2
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where the second order tensor Hkl associated with the 
yield function, f, is defined as 
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The parameter Hp is a plastic modulus associated 

with the rate of expansion of the loading surface, and it 
can be defined as the slope of the uniaxial stress−plastic 
strain curve at the current value of σe.  
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For the F(J2, J3) material, such as the von-Mises 

material, which is pressure independent when plastic 
flow occurs, the effective plastic strain increment is 
defined as 
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The strain history for the material is the record of 

the length of the effective plastic strain path: 
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From the above equations, when the plastic flow 

occurs, the incremental stress−strain relationships can be 
derived as follows: 
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In conclusion, the complete incremental stress− 
strain relationships for an elastic−plastic work-hardening 
material can be expressed as follows. 

For 0) , ,( p =kf ijij εσ , and 0d >
∂
∂

klijkl
ij

Cf
ε

σ
, the 

material is in a plastic loading state, and we have 

klijklij C εσ dd ep= . ep
ijklC  is given in Eq. (25) and Eq. (26). 

For 0) , ,( p <kf ijij εσ , or 0) , ,( p =kf ijij εσ ,  

0d ≤
∂
∂

klijkl
ij

Cf
ε

σ
, the material is in an unloading or 

neutral loading state, and we have .dd klijklij C εσ =  

ijklC  is given in Eq. (7). 

 
5 FE verification on uniaxial tensile test for 

constitutive law 
 
5.1 FE model 

In order to verify the reliability of the presented 
constitutive law of the AZ31B-H24 Mg alloy, numerical 
analyses were carried out by means of the finite element 
method in this study, whose results were verified by the 
uniaxial tensile experiments performed by ABU-FARHA 
and KHRAISHEH [8]. The FE simulation was 
performed using a commercial FE package, ABAQUS 
version 6.10. The constitutive law of Eq. (1) was 
embedded into a rate-dependent metal plasticity material 
model of ABAQUS, in which the elastic−plastic theory 
combined with the selective isotropic hardening rule 
could be included to evaluate the incremental 
stress−strain relationships. The constitutive stress, strain 
and strain rate data calculated from Eq. (1) could be 
input into a three-column table in the rate-dependent 
metal plasticity material model of ABAQUS. When the 
analysis begins, ABAQUS connects the data points with 
piecewise linear line segments to approximate the 
nonlinear stress−strain relationships of the material. The 
geometry, boundary conditions, and element distribution 
of the FE model used to simulate the uniaxial tensile 
tests are schematized in Fig. 3. The geometry constructed 
in the FE model only includes the gauge region with a 
cross section of 6.35 mm×3.22 mm and a length of 19.05 
mm because it is the place used to define the stress and 
strain characteristics within the sample. The analyses 
were conducted with a three-dimensional FE simulation 
with an advantage of being able to clearly examine the 
stress and deformation conditions in the model. For the 
purpose of simulating the uniaxial tensile tests, the 
boundary conditions are described as follows: Ux=0 is  
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Fig. 3 Geometry, boundary conditions, and element distribution of finite element model for simulating uniaxial tensile test 
 
applied to the ABCD plane; Uy=0 is applied to the AB 
and EF line segments; Uz=0 is applied to points A and E. 
In addition, the uniaxial constant-strain-rate stretch was 
simulated using a uniform x-direction stretching velocity, 
vx, on the EFGH plane. As time passed during the test, 
the total length of the tensile specimen became longer 
and longer; then the uniaxial stretching speed had to be 
quicker and quicker for the purpose of maintaining the 
strain rate with a constant value. As a result, the 
stretching velocity, vx, can be expressed as the following 
function of testing time, sample’s initial length and the 
controlled strain rate[25]: 
 

) exp(0 tLvx εε &&=                             (28) 
 
where L0=0.01905 m, is the initial length of the gauge 
region; ε&  denotes the value of the controlled strain rate; 
t is the testing time. 

Figure 3 also shows the mesh of the FE model, in 
which there was the three-dimensional second-order 
solid element, C3D20, which provided better accuracy 
for describing deformation compared with the first-order 
element. The ABAQUS built-in C3D20 element is a 
20-node quadratic brick element, which has three 
degrees of freedom per node (displacements in x, y, and z 
directions). The cases studied here addressed the 
problem of a homogeneous and isotropic material 
experiencing uniform uniaxial velocity on its uniform 
cross section. According to the theory of continuum 
mechanics, the axial stresses and strains existing in 
elements throughout the model should be uniform; thus, 
there is no need to perform a convergent analysis on the 
element number of the model. However, we observed 
that the initial aspect ratio of the elements should be less 
than a maximum value of 4 in order to avoid a numerical 

error in the FE calculation. By arranging the number of 
the elements equal to 6, 2, and 1 corresponding to the x, y, 
and z directions, respectively, the initial aspect ratio of 
the elements in the whole model was 1.01. The Full 
Newton−Raphson iterative procedure embedded in 
ABAQUS was chosen to solve the iteration process and 
non-linear equations of motion in this study. 
 
5.2 FEA results 

The comparison of axial stress−strain relationships 
between the experimental results and numerical analyses 
is presented in Fig. 4. In this figure, the stress−strain 
curves of the nine experimental constant-strain-rate 
stretch cases were drawn with solid lines, where thicker 
and thinner lines were used to represent the 
corresponding experimental and FEA results, respectively. 
 

  
Fig. 4 Comparison between FEA and experimental results for 
stress−strain characteristics of AZ31B-H24 magnesium alloy 
under various constant-strain-rate conditions 
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On the other hand, the broken lines in Fig. 4 predict other 
constant-strain-rate stretch conditions that were not 
carried out by the tensile tests. This figure shows that the 
FEA results were in good agreement with all nine 
experimental strain rate curves ( ε& =10−2−2×10−5 s–1). 
Furthermore, the broken lines in Fig. 4 also show that the 
presented constitutive law has the ability to reasonably 
predict other stress−strain characteristics of strain rates 
ε& =7×10−3, 3.5×10−3, 7×10−4, 3.5×10−4, 7×10−5, 3.5×10−5 
and 1×10−5 s–1, which make up for the lack of tensile 
experiments and prove that the proposed constitutive law 
is suited for a deformed strain rate range of 10−5−10−2 s−1. 
Figure 5 depicts the original undeformed as well as the 
deformed FE samples for the nine experimental constant- 
strain-rate cases when each analysis approximately 
reached its experimental ultimate strain state. By 
comparing Fig. 5 with the corresponding experimental 
results in Fig. 2, the deformed shape, length, width, and 
thickness of the gauge section in the experimental 
samples agree well with the results of the FE simulation. 
The axial true stress contour defined by different colors 
and the true strain value at different stages of 
deformation in the case of ε& =5×10−5 s–1 are shown in 
Fig. 6, which represents the deformation stages of 
analysis from the beginning until the experimental 
ultimate strain state is reached. In this figure, the grade 
of axial true stress contour is represented by the different 
colors at the lower left corner. There are four samples in 
Fig. 6, and the undeformed sample on the far right 
indicates the initial condition of the analysis, in which 
the stress and strain values are both equal to zero and in 
which the zero stress is located at a blue color contour 
range of 0−1.00 MPa. The second blue sample from the 
right in Fig. 6 indicates that the analysis approximates to 
the initial yielding stage with a strain value of 0.006 as 
well as a stress value of 1.612 MPa, which is located at a 
blue color contour range of 1.00−2.00 MPa, can be 
determined by the corresponding stress−strain curves of 
FEA results shown in Fig. 4. Similarly, the third red and 
the fourth green samples from the right in Fig. 6 reveal 
that the analysis is demonstrating the corresponding 
maximum ultimate stress state (σ=11.659 MPa, and 
ε=1.0), and the ultimate experimental strain state 
(σ=7.529 MPa, and ε=1.70), respectively. Since the 
deformation histories of other constant-strain-rate FE 
analyses are similar to those depicted in Fig. 6, we only 
use them for the emblematic presentation. Figure 6 
reveals that the axial stresses and strains are uniformly 
distributed in the model at every deformation stage. The 
reason for this was mentioned in Section 5.1 in which we 
described the problem type analyzed in the FEM as a 
uniform uniaxial velocity acting on a uniform cross 
section of a homogeneous and isotropic material. Hence, 

the studied samples became uniformly longer and thinner 
until the analysis approximately reached the 
experimental ultimate fracture strain state. These results 
satisfy the need for good agreement with the complete 
stress−strain characteristics between the FEA and the 
experiments. Hence, the presented constitutive law and 
the FE model are confirmed to be adequate for 
simulating the uniaxial tensile tests. 
 

 

Fig. 5 Original undeformed as well as deformed FE samples for 
nine experimental constant-strain-rate cases when each analysis 
approximately reached its experimental ultimate strain state 
 

 

Fig. 6 Stress and strain history of FEA at different stages of 
deformation in the case of strain rate equal to 5×10−5  
 
6 FE simulation on constant-velocity stretch 

cases and bulge forming experiment 
 

In addition, for the purpose of verifying the 
adaptability of the constitutive law on time dependent 
strain rate problems, some predicting simulations were 
performed here on the uniaxial constant-velocity stretch 
condition, which is often seen in uniaxial tensile tests. 
Due to the fact that the total length of the tensile 
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specimens became longer and longer, the strain rate 
value gradually decreased during the constant-velocity 
stretch process. In order to simulate this problem, the 
uniform x-direction stretching velocity, vx, on the EFGH 
plane in Fig. 3 had to be set with a constant value. There 
were five constant velocity values (vx=2×10−4, 1×10−4, 
5×10−5, 2×10−5, and 1×10−5 m/s) chosen for the 
predicting analyses, and the corresponding FEA results 
for the stress−strain curves are shown in Fig. 7, which 
shows that all five constant-velocity stress−strain curves 
crossed the experimental constant-strain-rate curves. 
When the constant-velocity analysis began, the strain 
increased with a gradually decreased value of strain rate, 
and this phenomenon can also be observed from the 
intersecting trend between the constant-velocity curves 
and the constant-strain-rate curves in Fig. 7. These 
results show that the presented constitutive law is 
adaptable for mechanical analysis on time-dependent 
strain rate problems for AZ31 mg alloys. 
 

 
 
Fig. 7 Comparison between FEA of constant-velocity 
conditions and experimental results of constant-strain-rate 
conditions for uniaxial stress−strain characteristics 
 

Furthermore, the FE simulation on the free bulge 
forming experiment, which was conducted by 
ABU-FARHA et al [26] using the same AZ31B-H24 Mg 
alloy mentioned in Section 2, was also performed here to 
assess the practicability of the proposed constitutive law. 
A schematic diagram of the studied geometry is shown in 
Fig. 8, where p is the applied argon gas pressure with an 
electronically controlled pressure−time profile plotted in 
Fig. 9. The radius of an open die, which is used to allow 
for the free forming of a circular sheet into a 
hemispherical dome, is 31.75 mm. The thickness of the 
sheet is 1 mm. After the sheet was clamped onto the die, 
the whole setup was heated to 400 °C, followed by    
30 min of holding time to allow for thermal equilibrium,  

 

 
Fig. 8 Schematic diagram of free bulge forming of circular 
sheet into hemisphere (Modified from ABU-FARHA et al [26]) 
 

 

Fig. 9 Pressure−time profile for free bulge forming experiment 
(Modified from ABU-FARHA et al [26]) 
 
before the pre-selected pressure scheme was applied. The 
experimental bulge heights were 29.5 and 31.5 mm at the 
corresponding forming time equal to 1805 and 1888 s, 
respectively. The geometry and boundary conditions 
constructed in the FE model for simulating this bulge 
forming experiment are schematized in Fig. 10. This case 
exhibits biaxial mechanical symmetry, so only a quarter 
of a circle plate had to be analyzed in the FE model. The 
radius of the forming quadrant ABC was 31.75 mm, 
where the (gas) pressure loading with a pressure−time 
profile plotted in Fig. 9 was applied to the ABC plane. 
The boundary conditions are described as follows: 
x-direction and y-direction symmetry conditions were 
 

 
Fig. 10 Geometry and boundary conditions of FE model for 
simulating bulge forming experiment 
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applied to the corresponding ADIF and AEJF plane, 
respectively; a fixed constraint was applied to the GHJI 
plane to simulate the clamped circumference. Figure 11 
shows the mesh of the FE model, in which there were 
1152 three-dimensional second-order tetrahedral 
elements, C3D10M. The ABAQUS built-in C3D10M 
element is a 10-node quadratic tetrahedral element, 
which has three degrees of freedom per node 
(displacements in x, y, and z directions). Since this 
analytic model also exhibits mechanical symmetry, the 
mesh was arranged to be symmetric to the central line of 
the whole quadrant. The ABAQUS/Explicit solver was 
chosen to integrate the equations of motion for this 
non-linear dynamic problem. The deformation history of 
FEA results are presented in Fig. 12 through the mirror 
function embedded in ABAQUS to display the 
symmetric deformation with respect to the ADIF and 
AEJF plane, so the entire hemispheric deformation can 
be shown for this biaxial symmetric FEA model. In 
addition, the experimental bulge deformation at 1805 s is 
also put in Fig. 12 for comparison. The bulge heights of 
FEA at 1805 and 1888 s were 29.22 and 31.54 mm, 
respectively, for which the corresponding errors were 
only 0.95% and 0.01% compared with the experimental 
results (29.5 and 31.5 mm). These results show that   
the presented constitutive law and FE model have good 
 

 
Fig. 11 Element distribution of FE model for simulating bulge 
forming experiment 

practicability for mechanical analysis on superplastic 
forming problems for AZ31 mg alloys. 
 
7 Conclusions 
 

The stress−strain relationships were analyzed based 
on curve fitting methods to develop a constitutive law, 
which was expressed as a flow stress function of strain 
and strain rate, for an AZ31B-H24 Mg alloy. The 
experimental stress−strain relationships were performed 
using the constant-strain-rate uniaxial tensile tests within 
a strain rate range of 2×10−5−10−2 s–1 at a temperature of 
400 °C. The presented constitutive law was embedded 
into an FE model that simulated the tensile tests for the 
purpose of verifying reliability. The analyzed 
AZ31B-H24 Mg alloy at 400 °C was assumed to be 
homogeneous and isotropic for the FE simulation, so the 
incremental stress−strain relationships were formulated 
using a 3D elastic-plastic model, which simulated the 
elastic response using Hooke’s law and the work 
hardening response using the flow rule associated with 
the von-Mises yield criterion combined with the isotropic 
hardening rule. The results showed the stress−strain 
relationships of the nine experimental constant-strain- 
rate stretch cases agree well with the FEA data, and the 
deformed shape, width, and thickness of the FEA also 
agreed well with the tensile test samples. These 
verifications confirm the reliability of the presented 
constitutive law and FE model, which can be used to 
analyze the mechanical behavior of AZ31B-H24 Mg 
alloy. Moreover, some constant-strain-rate cases which 
were not carried out by the tensile tests were also 
analyzed for supplements, where the results represented 
good reasonability and further expanded the applicable 
strain rate range of 10−5−10−2 s−1 for the proposed  

 

 

Fig. 12 Bulge forming deformation history of FEA as well as experimental result at 1805 s 
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constitutive law. Finally, five uniaxial constant-velocity 
stretch cases and a free bulge forming experiment were 
simulated, and the results also showed good 
practicability for the proposed FE model. This work 
offers a selective numerical method for advanced 
mechanical superplastic analysis on AZ31 Mg alloys. 
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AZ31 镁合金 400 °C 本构律之有限元验证分析 
 

曾世聪，胡宣德 
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摘  要：本文以曲线拟合方法，分析 AZ31B-H24 镁合金的单轴拉伸试验，针对材料在 400 °C 温度下，应变率

ε& =10−5−10−2 s−1范围之应力—应变关系曲线，找出一个以应变、应变率为函数的应力流方程式之本构模型，并将

此模型掺入有限元(FEM)建构一合理的数值分析模式，仿真该单轴拉伸试验，以验证其可靠性。有限元分析(FEA)

时以固体力学的弹−塑性理论来运算材料塑性流演化行为的应力增量−应变增量之关系。分析结果显示，FEA 与单

轴拉伸试验的应力—应变关系曲线，在各变形阶段上，二者皆具有相当不错的吻合性；且实验与 FEA 在极限应

变状态下之杆件的变形形状，二者结果亦相当接近；本文并以此 FEM 分析模式预测固定速率之单轴拉伸案例，

对该材料的吹制成型试验进行仿真，结果亦验证了本文所提出的本构模型拥有超塑性成型力学分析的实用性。本

文对 AZ31 镁合金之超塑性力学分析提供了一个数值分析模式之参考。 

关键词：AZ31 镁合金；本构律；有限元验证 
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