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a  b  s  t  r  a  c  t

A  meshless  collocation  method  is  developed  for the  static  analysis  of plane  problems  of  functionally
graded  (FG)  elastic  beams  and  plates  under  transverse  mechanical  loads  using  the differential  reproducing
kernel  (DRK)  interpolation,  in  which  the DRK  interpolant  is  constructed  by  the  randomly  distributed
nodes.  A  point  collocation  method  based  on this  DRK  interpolation  is developed  for  the  plane  stress
and  strain  problems  of  homogeneous  and  FG  elastic  beams  and  plates.  It is shown  that  the present  DRK
interpolation-based  collocation  method  is  indeed  a truly  meshless  approach  with  excellent  accuracy  and
has  a fast  convergence  rate.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The development and application of efficient meshless methods
have attracted considerable attention in recent decades. The mesh-
less methods in the published literature can be classified into two
major categories, namely the collocation-based and Galerkin-based
methods, for solving the strong- and weak-forms of the problems
considered, respectively. The former includes the smooth particle
hydrodynamics (Monaghan, 1988), h-p cloud (Liszka et al., 1996),
point interpolation collocation (Liu and Gu, 2001), least-squares
collocation (Zhang et al., 2001), and finite point (Õnate et al., 2001)
methods, and the later includes the reproducing kernel (RK) parti-
cle (Liu et al., 1995), moving least square (Liu et al., 1997; Li and Liu,
1996), element-free Galerkin (EFG) (Belytschko et al., 1994), mesh-
less local Petrov–Galerkin (MLPG) (Atluri and Zhu, 1998), and local
integral equation (LIE) (Sladek et al., 2006a, 2007) methods. Com-
prehensive literature surveys of the meshless methods have been
undertaken by Atluri and Shen (2002),  Belytschko et al. (1994), Li
and Liu (2002),  and Liu and Gu (2005).

Based on the weak formulation, Sladek et al. (2003, 2005,
2006a,b, 2007, 2008) developed the MLPG and LIE methods for
the analyses of elastodynamic, viscoelastic static and thermoelastic
problems of solids and plates with FG material properties. They con-
cluded that higher order derivatives occur in governing equations
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for the above-mentioned problems, that requires more accurate
meshless approximation in the strong formulation than in the weak
one. In the weak formulation, it is possible to decrease the order
of derivatives, and lower order derivatives are more accurately
approximated than higher order ones.

This literature review, given below, will focus on the pub-
lished works dealing with the development and application of
the meshless collocation methods using the RK approximants and
interpolants. Liu et al. (1995) proposed an RK particle method for
numerical analysis of partial differential equations, in which the
continuous RK functions were developed by satisfying a set of the
reproducing conditions, and a point collocation method based on
these was  presented by Aluru (2000).  Another point collocation
method, based on the fast moving least-square reproducing ker-
nel approximation, was  developed by Kim and Kim (2003) and Lee
et al. (2008),  in which a scheme of approximating derivatives was
proposed, and it was  successfully applied to solve the Poisson and
Stokes problems. Li and Liu (1998) developed a synchronized RK
interpolation method, for which the convergence rate of the higher-
order derivatives of the shape functions can be turned to that of the
shape function itself. Li and Liu (1999a,b) proposed a method of RK
hierarchical partition of unity, in which a class of basic wavelet
functions was  introduced to achieve the partitioning.

Wu et al. (2008) developed a differential reproducing kernel
(DRK) approximation-based collocation method for the quasi-3D
analysis of multilayered piezoelectric plates and FG magneto-
electro-elastic shells. The novelty of this DRK approximation is
in the determination of the shape functions of derivatives of the
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RK approximants, which are obtained using a set of differen-
tial reproducing conditions without directly differentiating the
approximants, as is necessary in the conventional approach. How-
ever, the DRK approximation method mentioned above is just like
other conventional RK approximation methods, in that the shape
functions of RK approximants at each sampling node do not pos-
sess the Kronecker delta properties, and this may  cause difficulties
when the essential boundary conditions are imposed in the imple-
mentation of the meshless methods. In order to overcome this
inconvenience, Wang et al. (2010) presented a meshless colloca-
tion method based on the DKR interpolation instead of the DRK
approximation, where the shape function of the DRK interpolant
at each sampling node is separated into a primitive function satis-
fying the Kronecker delta properties and an enrichment function
constituting the reproducing conditions. In this paper, the DRK
interpolation-based collocation method is extended to the plane
elasticity problems of FG elastic beams and plates under trans-
verse mechanical loads, in which an elliptic, rather than a circular,
influence zone is used for the weight function at each sampling
node, and some critical points with regard to the implementation
of this method are studied, such as the optimal support size and
the highest order of the basis functions.

2. The DRK interpolation

2.1. The DRK interpolant

It is assumed that there are np discrete nodes randomly selected
and located at x = x1, x2, . . . , xnp , respectively, in the physical
domain �, in which xl = (xl, yl), l = 1, 2,. . .,  np. The DRK interpolant
ua(x) of the unknown function u(x), ∀ x ∈ �, is defined as

ua(x) =
np∑
l=1

Nl(x)ul =
np∑
l=1

[�̄l(x) + �̂l(x)]ul, (1)

where Nl(x) is the shape function of the DRK interpolant at
the sampling node x = xl; ul is the nodal values of ua(x) at
x = xl; �̂l(x) (l = 1, 2,. . .,  np) denote the primitive functions used
to introduce the Kronecker delta properties; �̄l(x) (l = 1, 2,.  . .,
np) denote the enrichment functions for imposing the nth-order
reproducing conditions, and are given by �̄l(x) = wa(x − xl) PT (x −
xl)b̄(x) in which PT (x − xl) denotes a set of the complete nth-
order polynomial functions, PT (x − xl) =

⌊
1, (x − xl), (y − yl),

(x − xl)
2, (x − xl)(y − yl), (y − yl)

2, . . . (x − xl)
n
⌋

, bT(x) denotes
the undetermined function vector and will be determined by sat-
isfying the reproducing conditions, and wa(x − xl) is the weight
function centered at xl with an elliptic support zone.

By selecting the complete nth-order polynomials as the basis
functions to be reproduced, we obtain a set of reproducing con-
ditions to determine the undetermined functions of b̄i(x) (i =
1, 2, . . . , nn) in Eq. (1) in which nn is the total number of the basis
functions and nn = (n + 1)(n + 2)/2, and these reproducing conditions
are given as

np∑
l=1

[�̄l(x) + �̂l(x)]xr
l ys

l = xr ys r + s ≤ n. (2)

Eq. (2) represents nn, nn = (n + 1) (n + 2)/2, reproducing conditions,
and can be rearranged in the explicit form of

r = s = 0 :

np∑
l=1

�̄l(x) = 1 −
np∑
l=1

�̂l(x), (3)

r = 1, s = 0 :

np∑
l=1

(x − xl)�̄l(x) = x

np∑
l=1

�̄l(x)

−
np∑
l=1

xl �̄l(x) = 0 −
np∑
l=1

(x − xl)�̂l(x), (4)

r = 0, s = 1 :

np∑
l=1

(y − yl)�̄l(x) = y

np∑
l=1

�̄l(x)

−
np∑
l=1

yl�̄l(x) = 0 −
np∑
l=1

(y − yl)�̂l(x), (5)

r = 2, s = 0 :

np∑
l=1

(x − xl)
2�̄l(x) = x2

np∑
l=1

�̄l(x) − 2x

np∑
l=1

xl�̄l(x)

+
np∑
l=1

x2
l �̄l(x) = 0 −

np∑
l=1

(x − xl)
2�̂l(x),...

(6)

r = 0, s = n :

np∑
l=1

(y − yl)
n�̄l(x) = 0 −

np∑
l=1

(y − yl)
n�̂l(x). (7)

The matrix form of the reproducing conditions in Eqs. (3)–(7) is
given as

np∑
l=1

P(x − xl)�̄l(x) = P(0) −
np∑
l=1

P(x − xl)�̂l(x), (8)

where P(0) =
[

1 0 0 · · · 0
]T

.

Substituting the expression of �̄l(x) into the reproducing con-
ditions given in Eq. (8),  we may  obtain the undetermined function
vector b̄(x) in the following form:

b̄(x) = A−1(x)

[
P(0) −

np∑
l=1

P(x − xl)�̂l(x)

]
, (9)

where A(x) =
np∑
l=1

P(x − xl)wa(x − xl)P
T (x − xl).

Substituting Eq. (9) into Eq. (1) yields the shape functions of the
DRK interpolant in the following form:

Nl(x) = �̄l(x) + �̂l(x) (l = 1, 2, . . . , np), (10)

where �̄l(x) = wa(x − xl)P
T (x − xl)A

−1(x)

[
P(0) −

np∑
l=1

P(x − xl)�̂(x)

]
.

It is noted from Eq. (10) that the enrichment functions should
vanish at all the nodal points (i.e., �̄l(xk) = 0), if we select a set of
primitive functions satisfying the Kronecker delta properties (i.e.,
�̂l(xk) = ılk) with their support sizes not covering any neighboring
nodal points, a priori, then the shape functions of the interpolation
function will satisfy the Kronecker delta properties (i.e., Nl(xk) = ılk).
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2.2. Derivatives of the DRK interpolant

Because the DRK interpolant ua(x) is given in Eq. (1),  its first-
order derivative with respect to x is expressed as

∂ua(x)
∂x

=
np∑
l=1

N(x)
l

(x) ul =
np∑
l=1

(
�̄(x)

l
(x) + ∂�̂l(x)

∂x

)
ul, (11)

where N(x)
l

(x) denotes the shape function of the first-order deriva-

tive of ua(x) with respect to x; and �̄(x)
l

(x) = wa(x − xl)P
T (x −

xl)b̄x(x), in which b̄x(x) is an undetermined function vector.
The differential reproducing conditions for a set of complete

nth-order polynomials are given as

np∑
l=1

[
�(x)

l
(x) + ∂�̂l(x)

∂x

]
xr

l ys
l = r xr−1 ys r + s ≤ n. (12)

Eq. (12) represents nn reproducing conditions, and can be rear-
ranged in the matrix form of

np∑
l=1

P(x − xl)�̄
(x)
l

(x) = −Px(0) −
np∑
l=1

P(x − xl)
∂�̂l(x)

∂x
,  (13)

where (−1)[Px(0)] = − ∂P(x − xl)
∂x

∣∣∣∣
x=xl

=
[

0 −1 0 · · · 0
]T

.

Substituting the expression of �̄(x)
l

(x) given in Eq. (11) into Eq.
(13) yields

b̄x(x) = A−1(x)

[
−Px(0) −

np∑
l=1

P(x − xl)
∂�̂l(x)

∂x

]
. (14)

Substituting Eq. (14) into Eq. (11) yields the first-order deriva-
tive of the DRK interpolant with respect to x in the form of

N(x)
l

(x) = �̄(x)
l

(x) + ∂�̂l(x)
∂x

,  (15)

where �̄(x)
l

(x) = wa(x − xl)P
T (x − xl)A

−1(x)

[
−Px(0) −

np∑
l=1

P(x − xl)
∂�̂l (x)

∂x

]
.

Carrying out the same derivation process for the higher-order
derivatives of ua(x) leads to

∂p+qua(x)
∂xp ∂yq

=
np∑
l=1

N
(

p︷︸︸︷
xx . . .

q︷  ︸︸  ︷
yy . . .)

l
(x)ul, (16)

where N
(

p︷︸︸︷
xx . . .

q︷  ︸︸  ︷
yy . . .)

l
(x) = �̄

(

p︷︸︸︷
xx . . .

q︷  ︸︸  ︷
yy . . .)

l
(x) + ∂p+q�̂l(x)

∂xp ∂yq ,

�̄
(

p︷︸︸︷
xx . . .

q︷  ︸︸  ︷
yy . . .)

l
(x) = wa(x − xl)P

T (x − xl)A
−1(x)⎡⎢⎢⎣(−1)p+qPxx . . .︸︷︷︸

p

yy . . .︸  ︷︷  ︸
q

(0) −
np∑
l=1

P(x − xl)
∂p+q�̂l(x)

∂xx . . .︸︷︷︸
p

∂yy . . .︸  ︷︷  ︸
q

⎤⎥⎥⎦ ,

Pxx . . .︸︷︷︸
p

yy . . .︸  ︷︷  ︸
q

(0) = ∂p+qP(x − xl)
∂xp ∂yq

∣∣∣∣
x=xl

.

2.3. Weight functions and the relative L2 error norm

In implementing the present DRK interpolation, the weight and
primitive functions (wa(x − xl) and �̂(x − xl)) must be selected in
advance, and they are given as

Normalized Gaussian function :

wa(s) =

⎧⎨⎩ e−(s/˛)2 − e−(1/˛)2

1 − e−(1/˛)2
for s ≤ 1

0 for s > 1
,  (17)

Quartic spline : �̂(s) =
{

−3s4 + 8s3 − 6s2 + 1 for s ≤ 1
0 for s > 1

,  (18)

where s =
√

(x − xl)
2 + (y − yl)

2(ax/ay)2/ax due to the fact that an
elliptic influence zone is used in this paper, in which ax and ay

denote the principal radii of curvature of this elliptic, and the ratio
between them is taken to be a constant related to the in-plane
dimension of the physical domain considered, for example it is
given as ax/ay = Lx/Ly, for a rectangular domain with an in-plane
dimension of Lx × Ly; and the value of  ̨ in Eq. (17) is taken to be
0.3, as commonly used in the literature. As Wang et al. (2010) sug-
gested, the normalized Gaussian function is adopted for the weight
function in this analysis due to its higher-order continuous prop-
erty, and the quartic spline function with a support size (either ax

or ay) which does not cover any neighboring node is used as the
primitive function for each sampling point.

The relative L2 error norm of the strain energy of an elastic body
is defined as follows:

(L2)˘ =

√∑np

l=1[(˘l)num − (˘l)exact]
2√∑np

l=1(˘l)
2
exact

, (19)

where the subscript  ̆ denotes the strain energy density of an elas-
tic body; and  ̆ is given as  ̆ = (�xεx + �yεy + �xy�xy)/2 in plane
elasticity problems, in which (�x, �y, �xy) and (εx, εy, �xy) are the
in-plane stress and strain components, respectively.

The convergence rate of the relative error norm is defined as

R = Log10[(L2)i+1/(L2)i]
Log10[(�x)i+1/(�x)i]

,  (20)

where (�x)i and (�x)i+1 are the uniform nodal spacings for the
coarse and refined node distributions, respectively.

3. Applications

The present DRK interpolation-based collocation method is
applied to some typical plane elasticity problems of solids, which
are the static analyses of a deep homogeneous elastic beam under
transverse sinusoidal loading and an infinitely long FG elastic plate
under cylindrical bending. The governing equations of the plane
elasticity in terms of the displacement components in the x and y
directions are given as follows:

(c11 u,x + c12 v,y),x +
⌊

c33(u,y + v,x)
⌋

,y = 0, (21)⌊
c33 (u,y + v,x)

⌋
,x + (c12u,x + c22 v,y),y = 0, (22)

where u and v denote the displacement components in the x and y
directions, respectively; and cij (i, j = 1, 2, 3) are the elastic stiffness
coefficients for the isotropic material, which are given as follows:

For plane stress problems,

c11 = c22 = E

(1 − 	2)
, c12 = 	 E

(1 − 	2)
,  c33 = E

2(1 + 	)
;
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Fig. 1. The configuration and coordinates of the deep beam.

For plane strain problems, c11 = c22 = (1 − 	) E

(1 + 	)(1 − 2	)
,

c12 = 	  E

(1 + 	)(1 − 2	)
, c33 = E

2(1 + 	)
;

in which E and 	 denote the Young’s modulus and Poisson’s ratio,
respectively, and it is assumed that 	 is constant and E a certain
function of the thickness coordinate (y) for the FGM beams/plates.

The possible boundary conditions at each point on the boundary
edge are

either (c11u,x + c12v,y)nx + c33(u,y + v,x)ny = t̂x or u = û,  (23a)

either c33(u,y + v,x)nx + (c12u,x + c22v,y)ny = t̂y or v = v̂, (23b)

where nx and ny are the direction cosines of the unit vector relative
to the given coordinates; t̂x and t̂y are the traction components; and
û and ŵ are the prescribed displacement components.

3.1. A deep beam under transverse sinusoidal loading

A plane stress problem, which deals with the static behav-
ior of a simply supported, deep homogeneous isotropic beam
under transverse sinusoidal loading (i.e., q = −q0 sin(
 x/L), and
q0 = 1 KNt/m2), as shown in Fig. 1, is studied. The thickness (h) and
length (L) of the deep beam are 2 m × 8 m,  and the Young’s modulus
and Poisson’s ratio are 70 GPa and 0.3, respectively. The boundary
conditions at the edges are given as follows:

�x(0,  y) = 0 and

∫ h/2

−h/2

�xy(0,  y) dy = −q0
L



, at x = 0 and

−h

2
≤ y ≤ h

2
,

(24a)

�x(L, y) = 0 and

∫ h/2

−h/2

�xy(L, y) dy = q0
L



, at x = L and

−h

2
≤ y ≤ h

2
,

(24b)

�y

(
x,

h

2

)
= −q0 sin

(
x

L

)
and �xy

(
x,

h

2

)
= 0, at y = h

2
and 0 ≤ x ≤ L,

(24c)

�y

(
x,

−h

2

)
= 0 and �xy

(
x,

−h

2

)
= 0, at y = −h

2
and 0 ≤ x ≤ L.

(24d)

Note that the boundary conditions given in Eqs. (24a) and (24b)
do not specify the pointwise distribution of shear stress on the
edges of the deep beam, but rather stipulate the resultant condi-
tion based on overall problem equilibrium. It is thus necessary to
assume a certain through-thickness distribution of the shear stress
at two edges (x = 0 and L) for which the resultant shear force corre-
sponding to the assumed shear stress should be equivalent to the

Fig. 2. The convergence rate of (L2)˘ of the deep beam.

one given in Eqs. (24a) and (24b), so that the boundary conditions
at these edges can be imposed node by node in the implementation
of the present collocation method. In order to validate the accuracy
and convergence rate of this collocation method, the boundary con-
ditions at the edges of x = 0 and x = L given in Eqs. (24a) and (24b)
are replaced, as follows:

�x(0,  y) = 0 and �xy(0,  y) = �̂xy(0,  y), at x = 0 and
−h

2
≤ y ≤ h

2
, (25a)

�x(L, y) = 0 and �xy(L, y) = �̂xy(L, y), at x = L and
−h

2
≤ y ≤ h

2
, (26b)

where �̂xy is the analytical solution of Timoshenko and Goodier
(1970).

Table 1 shows the results for the dimensionless stress and
displacement components ( �̄x and v̄) induced at the centre of
the beam, in which �̄x = �x/q0, v̄ = 100h3 E v/(L4q0), (n = 3, ax =
4.1�x, ay = ax/4) and (n = 4, ax = 4.6�x,  ay = ax/4) are taken,
and the regular distributions of 9 × 9, 11 × 11, 13 × 13 and 17 × 17
nodes are used. It is seen in Table 1 that the solutions con-
verge rapidly, and the relative L2 error norm of the strain energy
of the beam is 0.27% for the 17 × 17 solution with (n = 3, ax =
4.1�x, ay = ax/4) and 0.013% for the 17 × 17 solution with (n =
4, ax = 4.6�x,  ay = ax/4), as compared with the exact solutions.

Fig. 2 shows the convergence rate (R) of (L2)˘ of the beam with
n = 3 and 4, and the average values of R are 3.31 for n = 3 and 4.88
for n = 4. The 9 × 9 and 17 × 17 solutions of the through-length and
-thickness distributions of displacement and stresses, respectively,
are presented in Fig. 3, in which n = 3. As expected, the displace-
ment solution is a higher-order polynomial through the length
coordinate, that of bending stress is linear through the thickness
coordinate, and that of shear stress is parabolic. It is also shown
that the 17 × 17 solutions are in excellent agreement with the exact
ones.

3.2. An infinitely-long FGM plate under cylindrical bending

A plane strain problem, which deals with the static behavior
of a simply-supported, infinitely long FG isotropic plate under the
cylindrical bending type of loading (q = −q0 sin(
x/L), and q0 =
1 Nt/m2), is studied. The plate is made of aluminum (bottom) and
alumina (top), for which the Young’s modulus obeys a power-law
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Table 1
The solutions for the dimensionless displacement and stress components induced at the centre of the beam under a sinusoidally distributed load.

Node-distributions (n = 3, ax = 4.1�x, ay = ax/4) (n = 4, ax = 4.6�x, ay = ax/4)

v̄(L/2, 0) �̄x(L/2, h/2) (L2)
 v̄(L/2, 0) �̄x(L/2, h/2) (L2)


9 × 9 −13.9745 −9.8299 2.73e−02 −14.1602 −9.9697 4.12e−03
11  × 11 −14.0490 −9.9051 1.27e−02 −14.1289 −9.9599 1.30e−03
13  × 13 −14.0755 −9.9263 6.72e−03 −14.1163 −9.9569 4.82e−04
17  × 17 −14.0934 −9.9437 2.70e−03 −14.1088 −9.9560 1.33e−04

Exact solutions: v̄(L/2, 0) = −14.1066, �̄x(L/2, h/2) = −9.9568.

a b c 

v(x,0)
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0

2

Exact solution
9x9
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h
y
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h
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x/L (L/2, y)x (L/4, y)xy

Fig. 3. The through-length and through-thickness distributions of displacement and stress components.

distribution of the volume fractions of the constituents, and the
Poisson’s ratio remains constant, as given by

E(y) = Em + (Ec − Em)
[

(2y  + h)
2h

]� −h

2
≤ y ≤ h

2
, (27)

	 (y) = 0.3
−h

2
≤ y ≤ h

2
, (28)

where the subscripts of m and c denote the metal and ceramic
materials constituting the bottom and top layers, respectively,
Em = 70 GPa and Ec = 380 GPa, and � is the volume fraction expo-
nent, which are taken to be 0, 1, 5, 10 and ∞,  in which when � = 0
and ∞ this FGM plate will be reduced to a homogeneous plate with
E = Ec and E = Em, respectively.

The total thickness and length of the plate are considered to be
2 m × 8 m.  The boundary conditions of this simply-supported plate
are given as follows:

�x(0,  y) = 0, w(0, y) = 0, at x = 0 and
−h

2
≤ y ≤ h

2
, (29a)

�x(L, y) = 0, w(L, y) = 0, at x = L and
−h

2
≤ y ≤ h

2
, (29b)

Table 2
The present solutions of dimensionless displacement and stress components
induced at the centre of the beam under a sinusoidally distributed load.

Node-distributions v̄(L/2, 0) �̄x(L/2, h/2) (L2)
 R

9 × 9 −12.9469 −9.9290 4.73e−03 –
11  × 11 −12.9582 −9.9512 1.27e−03 –
13  × 13 −12.9530 −9.9535 6.93e−04 4.74
17  × 17 −12.9487 −9.9551 3.05e−04 2.85

Exact solutions: v̄(L/2, 0) = −12.9476, �̄x(L/2, h/2) = −9.9568.

and the ones at the top and bottom surfaces of the plate are in the
same forms as Eqs. (24c) and (24d), which are commonly used in
the literature (Wu and Li, 2010; Wu  et al., 2011).

Table 2 shows the results for the dimensionless stress and
displacement components ( �̄x and v̄) induced at the centre of
the plate, in which �̄x = �x/q0, v̄ = 100h3 Em v/(L4q0), n = 4, ax =
4.6�x, ay = ax/4, and the regular distributions of 9 × 9, 11 × 11,
13 × 13 and 17 × 17 nodes are used. It is seen in Table 2 that the
solutions converge rapidly, and the relative L2 error norm of the
strain energy of the plate is 0.03% for the 17 × 17 solution as com-
pared with the exact solutions obtained using the modified Pagano
method (Wu et al., 2010).
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Fig. 4. The variations of the through-length distributions of displacement and through-thickness distributions of stress components with the volume fraction exponent �.



476 C.-P. Wu et al. / Mechanics Research Communications 38 (2011) 471– 476

Fig. 4 shows the variations of the through-length distribu-
tions of displacement and through-thickness distributions of
stress components with �, in which �̄x = �x/q0, �̄xy = �xy/q0, v̄ =
100h3 Ec v/(L4q0), and the regular distribution of 17 × 17 nodes,
n = 4, ax = 4.6�x and az/ax = 1/4 are taken. It is seen in Fig. 4 that
the through-thickness distributions of stress components induced
in the FG plates (� /= 0 or ∞)  are quite different from those in
the homogeneous plate. The distributions of the in-plane nor-
mal  stresses appear to be higher-order polynomials through the
thickness coordinate of the FG plates, while they are linear func-
tions through the thickness coordinate of the homogeneous plates.
The through-thickness distributions of the in-plane shear stresses
induced in the FG plates appear to be higher-order polynomials
with the maximum value occurring at the upper portion of the
plate, while they are parabolic functions with the maximum value
in the middle surface of the homogeneous plates. The deflection
of the FG plates increases when the volume fraction exponent
becomes larger; meanwhile, the overall performance of the plate
becomes softer.

4. Conclusions

In this paper, we extended the DRK interpolation-based col-
location method to the plane elasticity analysis of homogeneous
and FGM beams and plates under mechanical loads. Two  bench-
mark problems, which are Timoshenko and Goodier’s plane stress
problem of a deep homogeneous beam and Pagano’s plane strain
problem of an infinite-long homogeneous plate, were used to val-
idate the accuracy and convergence rate of the present collocation
method. Subsequently, this method was extensively applied to the
analysis of FGM plates. In the illustrated examples, it is shown
that the present method using 17 × 17 nodes with n = 4, ax =
4.6�x, ay = ax/4 may  lead to satisfactory results with a fast con-
vergence rate, in which the (L2)˘ error norm is 0.013% and the
convergence rate (R) is about 4.9 in the plane stress case, and (L2)˘

is 0.03% and R is about 3.8 in the plane strain case. Moreover,
the through-thickness distributions of normal stress components
induced in the FG plates (� /= 0 or ∞)  are different from those in the
homogeneous plate. These distributions appear to be higher-order
polynomials through the thickness coordinate of the FG plates,
while they are linear functions through the thickness coordinate
of the homogeneous plates.
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