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a b s t r a c t

The Abaqus finite element program together with nonlinear material constitutive models for concrete-

filled tube (CFT) and steel gusset plate is used to analyze the behaviors of the gusset plate type CFT-to-

Bracing connections subjected to axial compressive forces. It is found that the failure of CFT-to-Bracing

connections occurs below the connecting area. Local bulged shapes of the steel tube might take place in

the areas close to the gusset plate and the fixed end under the failure stage. The ultimate strengths of

the CFT columns slightly increase with the increasing of the load ratio and the thickness of the gusset

plate. The introduction of the cutouts on the gusset plates slightly increases the ultimate strength of the

CFT column and causes more local bulged shapes on the steel tubes below the connection area under the

failure stage.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A concrete-filled tube (CFT) column consists of a steel tube

filled with concrete. Due to the benefit of composite action

of both materials, the CFT columns provide excellent seismic

resistant structural properties such as high strength, high ductility

and large energy absorption capacity. Therefore, CFT columns

have gained popularity in supporting heavy loads in high-rise

buildings, bridges and offshore structures. Various experimental

and analytical studies have been performed on CFT columns

[1–17] and special interests have been focused on the connection

regions [18–24].

The aim of this investigation is to employ the nonlinear finite

element programAbaqus [25] to perform numerical simulations of

the gusset plate type CFT-to-bracing connections (Fig. 1) subjected

to axial compressive forces Pa and Pg . To achieve this goal, proper

material constitutive models for steel gusset plate, steel tube

and concrete core are proposed. Then the proposed material

constitutive models are verified against experimental data of

Yang [26]. Finally, the influence of the thickness of the gusset plate,

the cutouts on the gusset plate and the type of loading on the

behavior of CFT-to-Bracing connections are studied and discussed.

∗ Corresponding author. Tel.: +886 6 2757575x63168; fax: +886 6 2358542.

E-mail address: hthu@mail.ncku.edu.tw (H.-T. Hu).

2. Material properties and constitutive models

The experiment for CFT-to-bracing connections subjected to

axial compressive forces (Fig. 1)was carried out by Yang [26]. There

are seventeen specimens in total (Table 1). These CFT columns are

subjected to compressive forces Pa and Pg to the end of the columns

and the gusset plates, respectively. The tested specimens can be

categorized into three groups. The first group of the CFT column

contains the S specimen which has no gusset plate at all. The S

specimen is subjected to axial compressive force Pa to the end only.

The second group of the CFT columns contains the P specimens.

The first number after P is the thickness of the gusset plate (in

mm), which could be 12, 24 and 36. The second number after P

is the load ratio Pa/(Pa + Pg) in terms of percentage. For example,

P24-67 specimen stands for CFT column having a gusset plate with

24 mm thickness and a load ratio Pa/(Pa + Pg) = 67%. The third

group of the CFT columns contains the PH specimens. Same as the P

specimens, the first number after PH is the thickness of the gusset

plate and the second number after PH is the load ratio. However,

the gusset plates of the PH specimens contain circular cutouts. The

24mmgusset plate has 2 circular holes and the 36mmgusset plate

has 3 circular holes. The dimensions and positions of these holes on

the gusset plates are shown in Fig. 2. From Table 1, we can observe

that the length H of the S specimen is equal to 795 mm. The length

of the rest P and PH specimens is equal to 1590mm. The diameterD

and the thickness t of all the tubes are equal to 265mm and 7mm,

respectively.
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Fig. 1. Geometry and loading of gusset plate type CFT-to-Bracing connection.

Table 1
Dimensions and load ratios of CFT columns.

Specimen H (mm) D (mm) L (mm) t (mm) h (mm) D/t Numbers of holes on gusset plate Load ratio Pa/(Pa + Pg ) (%)

S 795 265 320 7 – 37.86 0 100

P12-00 1590 265 320 7 12 37.86 0 0

P12-33 1590 265 320 7 12 37.86 0 33

P12-67 1590 265 320 7 12 37.86 0 67

P24-00 1590 265 320 7 24 37.86 0 0

P24-33 1590 265 320 7 24 37.86 0 33

P24-67 1590 265 320 7 24 37.86 0 67

P24-100 1590 265 320 7 24 37.86 0 100

P36-00 1590 265 320 7 36 37.86 0 0

P36-33 1590 265 320 7 36 37.86 0 33

P36-67 1590 265 320 7 36 37.86 0 67

PH24-00 1590 265 320 7 24 37.86 2 0

PH24-33 1590 265 320 7 24 37.86 2 33

PH24-67 1590 265 320 7 24 37.86 2 67

PH36-00 1590 265 320 7 36 37.86 3 0

PH36-33 1590 265 320 7 36 37.86 3 33

PH36-67 1590 265 320 7 36 37.86 3 67

Fig. 2. Cutouts on the gusset plates.

2.1. Steel tube and steel gusset plate

In the analysis, Poisson’s ratio νs and the elastic modulus Es of
the steel tube and steel gusset plate are assumed to be 0.3 and
200 GPa, respectively. The uniaxial behavior of the steel tube and
the steel gusset plate is modeled by a piecewise linear model and
their stress–strain curves used in the analysis are shown in Fig. 3.

When the steel tube and the steel gusset plate are subjected to
multiple stresses, a vonMises yield criterion is employed to define
the initial yield surface, which is written as

F = √
3J2 − σy

= 1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 − σy = 0 (1)

where J2 is the second stress invariant of the stress deviator tensor
and σ1, σ2, and σ3 are the principal stresses. Fig. 4 shows the
von Mises yield surface in the three-dimensional principal stress
space. The response of the steel tube and the steel gusset plate
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Fig. 3. Stress–strain curves of steel tube and steel gusset plate.

Fig. 4. Von Mises yield surface in the three-dimensional principal stress space.

is modeled by an elastic hardening plastic theory with isotropic

hardening rule and associated flow rule.When plastic deformation

occurs, there should be a certain parameter to guide the expansion

of the yield surface. A commonly used approach is to relate

the multidimensional stress and strain conditions to a pair of

quantities, namely, the effective stress fs and effective strain εs,
such that results obtained following different loading paths can

all be correlated by means of the equivalent uniaxial stress–strain

curve. In this investigation, the uniaxial stress–strain curves given

in Fig. 3 are used as the equivalent uniaxial stress–strain curve

for the steel tube and the steel gusset plate. As the result, the

subsequent yield surfaces of the tube and the gusset plate can be

written as

F = √
3J2 − fs

= 1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 − fs = 0. (2)

2.2. Concrete

Poisson’s ratio νc of concrete under uniaxial compressive stress

ranges from 0.15 to 0.22, with a representative value of 0.19 or

0.20 [27]. In this study, Poisson’s ratio of concrete is assumed to

be 0.2.

Let the uniaxial compressive strength and the corresponding

strain of the unconfined concrete be f ′
c and ε′

c (Fig. 5). The value
of ε′

c is usually around the range of 0.002–0.003. A representative

value 0.002 is used in the analysis. When concrete is subjected to

Fig. 5. Equivalent uniaxial stress–strain curve for concrete.

Fig. 6. Linear Drucker–Prager yield criterion for concrete.

laterally confining pressure, the uniaxial compressive strength f ′
cc

and the corresponding strain ε′
cc (Fig. 5) aremuchhigher than those

of unconfined concrete. The relations between f ′
cc , f

′
c and between

ε′
cc , ε

′
c are estimated by the following equations [28]:

f ′
cc = k4f

′
c + k1fl (3)

ε′
cc = ε′

c

(
1 + k2

fl

f ′
c

)
(4)

where fl represents the confining pressure around the concrete
core. The coefficients k1 and k2 are constants and can be
obtained from experimental data. Though, Eqs. (3) and (4) are
proposed by Mander et al. [28], they have been adopted by many
researchers [29–36]. Meanwhile, the coefficients k1 and k2 are set
to 4.1 and 20.5 based on the studies of Richart et al. [37]. The
original form of Eq. (3) was proposed for concrete subjected to
hydrostatic pressure [28] and did not contain the strength factor
k4. For CFT subjected to bendingmoment, part of the concrete may
be subject to tensile stress, which is different from the hydrostatic
pressure condition. Therefore, a strength factor k4 is introduced by
the authors [15] with the limitation 0 ≤ k4 ≤ 1.

The concrete in the CFT columns is subjected to triaxial
compressive stresses and the failure of concrete is dominated
by a compressive failure surface expanding with the increasing
of hydrostatic pressure. Hence, a linear Drucker–Prager yield
criterion G (Fig. 6) is used to model the yield surface of concrete,
which is expressed as

G = t − p tanβ − d = 0 (5)

where

p = −(σ1 + σ2 + σ3)/3 (6a)

d =
(
1 − tanβ

3

)
f ′
cc (6b)

t =
√
3J2

2

[
1 + 1

K
−

(
1 − 1

K

) (
r√
3J2

)3
]

(6c)

r =
[
9

2
(S31 + S32 + S33)

]1/3

(6d)
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Fig. 7. Conceptual sketch and finite element modeling of CFT-to-bracing

connection.

and S1, S2, and S3 are principal stress deviators. The constants K and
β are material parameters determined from experimental data. In
the analysis, K and β are set to 0.8 and 20°, respectively [14,15].

The response of the concrete is also modeled by an elastic
hardening plastic theory with isotropic hardening rule and
associated flow rule. The stress–strain relationship proposed by
Saenz [38] has been widely adopted as the uniaxial stress–strain
curve for concrete and it has the following form:

fc = Ecεc

1 + (R + RE − 2)
(

εc
ε′
cc

)
− (2R − 1)

(
εc
ε′
cc

)2 + R

(
εc
ε′
cc

)3
(7)

where

R = RE(Rσ − 1)

(Rε − 1)2
− 1

Rε

, RE = Ecε
′
cc

f ′
cc

and Rσ = 4, Rε = 4 may be used [39]. The initial modulus
of elasticity of concrete Ec is highly correlated to its compressive
strength and can be calculated with reasonable accuracy from the
empirical equation [40]:

Ec = 4700
√
f ′
cc MPa. (8)

In the analysis, Eq. (7) is taken as the equivalent uniaxial
stress–strain curve for concrete when the concrete strain εc is less
than ε′

cc (Fig. 4). When εc > ε′
cc , a linear descending line is used

to model the softening behavior of concrete. If k3 is defined as the
material degradation parameter, the descending line is assumed to
be terminated at the point where fc = k3f

′
cc and εc = 11ε′

cc [14,15].

3. Finite element model for CFT columns

The specimens for CFT-to-bracing connections subjected to
axial compression force have been shown in Fig. 1. Due to
symmetry, only one fourth of the CFT-to-bracing connection is
analyzed (Fig. 7). Symmetric boundary conditions are enforced on
the symmetric planes, which are u = 0 on the front surface of the
element mesh and v = 0 on the top surface of the element mesh
surface. To model the fixed end condition, u = v = w = 0 are set
at the right surface of the elementmesh. In addition, u = v = 0 are
set at the left surface of the elementmesh to simulate the boundary
condition of the loading end.

In the finite element mesh, the concrete core, the steel
tube and the steel gusset plate are all modeled by 8-node
isoparametric solid elements (three degrees of freedom per node)
with reduced integration rule. There are three interfaces existed
in the finite element mesh, which are the concrete–tube interface,
the concrete–gusset plate interface and the tube–gusset plate
interface. All these interfaces are modeled by pairs of contact
surfaces. The nodes on these interfaces are connected through the
contact surfaces that require matching meshes on the both sides
of the interfaces. These contact surfaces can model infinitesimal

Fig. 8. Simulation of k3 for specimens S, P24-00 and P24-100 (k4 = 0.75).

Fig. 9. Positions of LVDT for CFT specimens.
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Fig. 10. Simulation of k4 for specimens S, P24-00 and P24-100.

Table 2
Results of numerical simulations.

Specimen Ultimate Load (MN) Error (%) fl (MPa) k3 k4

Experiment Analysis

S 3.876 3.834 1.08 3.748 0.45 0.75

P12-00 3.693 3.775 2.22 3.748 0.6 0.75

P12-33 3.897 3.743 3.95 3.748 0.6 0.75

P12-67 3.871 3.805 1.70 3.748 0.6 0.75

P24-00 3.755 3.773 0.48 3.748 0.6 0.75

P24-33 3.862 3.796 1.71 3.748 0.6 0.75

P24-67 3.921 3.803 3.01 3.748 0.6 0.75

P24-100 3.803 3.812 0.24 3.748 0.6 0.75

P36-00 3.865 3.770 2.46 3.748 0.6 0.75

P36-33 4.154 3.794 8.67 3.748 0.6 0.75

P36-67 4.014 3.806 5.18 3.748 0.6 0.75

PH24-00 3.847 3.782 1.69 3.748 0.6 0.75

PH24-33 3.920 3.803 2.98 3.748 0.6 0.75

PH24-67 4.041 3.810 5.72 3.748 0.6 0.75

PH36-00 3.742 3.802 1.60 3.748 0.6 0.75

PH36-33 4.052 3.811 6.32 3.748 0.6 0.75

PH36-67 4.051 3.814 5.85 3.748 0.6 0.75

Fig. 11. Influence of the friction coefficient on the behavior of CFT columns.

Fig. 12. Load–displacement curves of specimen S.

sliding and friction [25]. The friction coefficient used in all the

analyses is μ = 0.25 [14,15]. As the results, the nodes on the

interfaces are allowed to either contact or separate but not to

penetrate each other.

Convergent studies of the finite element meshes have been

done by the authors using various element sizes for CFT

columns [41]. It has been shown that the numerical results are

not too sensitive to the element sizes and mesh refinements. All

the finite element meshes used in the analysis can be seen in the

deformation plots of the following section.

4. Numerical analysis

In order to carry out the numerical analysis, the parameters fl, k3
and k4 of the confined concrete should be provided to completely

define the equivalent uniaxial stress–strain relation. Based on

the suggestion by previous research [14], the following empirical
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Fig. 13. Deformation shape of specimen S.

Fig. 14. Load–displacement curves of specimens P12-00, P12-33 and P12-67.

expression is used to calculate the lateral confining pressure of

concrete fl.

fl/fy = 0.043646 − 0.000832(D/t) (21.7 ≤ D/t ≤ 47) (9)

(a) P12-00

(b) P12-33

(c) P12-67

Fig. 15. Deformation shapes of specimens P12-00, P12-33 and P12-67.

where fy = 308.5 MPa is the yield stress of the steel tube. Since
the D/t value of all the specimens is equal to 37.86, we obtain
fl = 3.748 MPa and this value is used in all the analyses.

The values of the parameters k3 and k4 apparently depend
on the cross-sectional geometry and material properties. Conse-
quently, their appropriate values are determined by matching the
numerical results with experimental data via parametric studies in
the following sections.

4.1. Simulation of the material degradation parameter k3

To make a proper selection of the material degradation
parameter k3, different values of k3 are simulated for CFT
specimens S, P24-00 and P24-100. The selected values of k3 are
k3 = 0.4 0.45, 0.6 and 0.8, respectively. Based on k4 = 0.75,
the load–displacement curves of the experimental data and the
numerical results for those specimens are shown in Fig. 8. The
vertical axes and the horizontal axes of the figure are the total
load P = Pa + Pg and the shortening of the LVDT displacement
transducer. The positions of the LVDT displacement transducers on
the CFT columns in the experimental set up are shown in Fig. 9.
From Fig. 8(a), we can observe that the numerical result with k3 =
0.6 are in good agreement with the experimental data of specimen
S. From Fig. 8(b) and (c), we can observe that the numerical results
with k3 = 0.45 are in good agreement with the experimental data
of specimens P24-00 and P24-100. The reason that the value of
k3 for specimen S is greater than those for specimens P24-00 and
P24-100 is because the S specimen does not have a gusset plate.
Since there are no cutouts on the tube, specimen S would have
a better confining effect than specimens P24-00 and P24-100. As
the result, after the ultimate strength of the concrete has been
reached, the concrete strength of the CFT column without gusset
plate is stronger than those with gusset plate. Similar results are
also observed for other CFT columns. Therefore, in the following
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Fig. 16. Failure patterns of specimens P12-00, P12-33 and P12-67 [26].

Fig. 17. Load–displacement curves of specimens P24-00, P24-33, P24-67 and P24-100.

analyses, k3 = 0.6 is used for CFT columnwithout gusset plate and
k3 = 0.45 is used for CFT columns with gusset plate.

4.2. Simulations of the strength factor k4

The strength factor k4 varies between 0 and 1. Tomake a proper
selection of the strength factor k4, different values of k4 are used
to simulate the behavior of CFT specimens S, P24-00 and P24-
100 again. Those selected values of k4 are k4 = 0.5, 0.75 and 1,
respectively. Based on the values of k3 suggested in the previous
section, the load–displacement curves of the experimental data
and the numerical results for those specimens are shown in Fig. 10.
We can observe that the numerical results with k4 = 0.75 are

in good agreement with the experimental data, even though the
gusset plates and the loading patterns of these specimens are in
quite different arrangements. This justifies the use of k4 = 0.75 in
previous section in determining the values of parameter k3. Similar
results are also observed for other CFT columns. Therefore, the
value k4 = 0.75 is used throughout the numerical analysis.

4.3. Influence of the friction coefficient

To study the influence of the friction coefficient between the
contact surfaces on the behavior of the CFT columns, different
values of μ are used to simulate the behavior of CFT specimens
P24-00 and P24-100. Those selected values are μ = 0, 0.25, 0.5,
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(a) P24-00

(b) P24-33

(c) P24-67

(d) P24-100

Fig. 18. Deformation shapes of specimens P24-00, P24-33, P24-67 and P24-100.

0.75 and 1, respectively. Based on the values of k3 and k4 suggested

in the previous sections, the load–displacement curves of the

experimental data and the numerical results for those specimens

are shown in Fig. 11. We can observe that the numerical results

with various μ are very close. Similar results are also observed

for other CFT columns. This confirms that the value of the friction

coefficientμ does not have significant influence on the behavior of

the CFT columns.

4.4. Simulations of the S specimen

The S specimen does not have any gusset plate and is subjected

to compressive force Pa at the end. The load–displacement curves

of the experimental data and the numerical results for S specimen

are shown in Fig. 12 and their ultimate loads are listed in Table 2.

It can be seen that the result of numerical analysis is very close to

the experimental data. In Fig. 12, the reaction forces contributed

from concrete and steel tube at the fixed end are also shown. It

is clear that the steel tube yields first. After the concrete reaches

its ultimate strength, the entire CFT column starts to soften up to

failure. Fig. 13 shows the deformation shape of the CFT column as

the specimen approaches failure. It can be seen that the concrete

core and steel tube still keep in contact to each other and no local

bulged shape of the tube takes place.

Fig. 19. Load–displacement curves of specimens P36-00, P36-33 and P36-67.

4.5. Simulations of the P12 specimens

The P12 specimens have gusset plates with 12 mm thickness.
The load–displacement curves of the experimental data and the
numerical results for P12-00, P12-33 and P12-67 specimens are
shown in Fig. 14 and their ultimate loads are listed in Table 2.
Generally, the results of the numerical analyses are in good
agreement with the experimental data.

The P12-00 specimen is subjected to force Pg applied to the
gusset plate only. Probably due to the stress concentration effect
around the gusset plate area, part of the concrete core would fail
before the yielding of the steel tube occurs (Fig. 14(a)). After the
yielding of the steel tube takes place, the concrete can still carry
out additional axial load up to its ultimate strength. The P12-33 and
P12-67 specimens are subjected to forces Pa and Pg simultaneously.
Similarly to the S specimen, the steel tube yields first (Fig. 14(b) and
(c)). After the concrete reaches its ultimate strength, the entire CFT
column starts to soften up to failure. From Fig. 14 and Table 2 we
can observe that the change of the load ratio, i.e. Pa/(Pa +Pg), does
not influence the ultimate strength of CFT columns significantly.
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(a) P36-00

(b) P36-33

(c) P36-67

Fig. 20. Deformation shapes of specimens P36-00, P36-33 and P36-67.

Fig. 15 shows the deformation shapes of the CFT columns as the
specimens approach failure. It can be seen that the deformation of
the column below the gusset plate is greater than those of other
places. Bulged shapes of the steel tube take place in the areas
close to the gusset plate and the fixed end. This local buckling
phenomenon is consistent with the experimental results as shown
by the photos [26] in Fig. 16. The local and post-local buckling
issues with respect to the circular tubes have been discussed in the
work of Bradford et al. [11] and are not duplicated here.

4.6. Simulations of the P24 specimens

The P24 specimens have gusset plates with 24 mm thickness.
The load–displacement curves of the experimental data and
the numerical results for P24-00, P24-33 P24-67 and P24-100
specimens are shown in Fig. 17 and their ultimate loads are listed
in Table 2. Generally, the results of the numerical analyses are in
good agreement with the experimental data.

In spite of the loading patterns, the steel tube of all the
specimens yields first. After the concrete reaches its ultimate
strength, the entire CFT column starts to soften up to failure. From
Fig. 17 and Table 2 we can observe again that the change of the
load ratio does not influence the ultimate strength of CFT columns
significantly. However, when the load ratio becomes large, the CFT
column would exhibit more softening behavior after its ultimate
strength been reached. In addition, we might conclude that the
ultimate strengths of the CFT columns slightly increase with the
increasing of the load ratio.

Fig. 18 shows the deformation shapes of the CFT columns as
the specimens approach failure. Again, it can be seen that the
deformation of the column below the gusset plate is greater than
those of other places. Local bulged shapes of the steel tube might
take place in the areas close to the gusset plate and the fixed end.
Comparing Fig. 18with Fig. 15, we can conclude that the increasing

Fig. 21. Load–displacement curves of specimens PH24-00, PH24-33 and PH24-67.

of the thickness of the gusset plate does not influence the failure
patterns of CFT columns significantly.

4.7. Simulations of the P36 specimens

The P36 specimens have gusset plates with 36 mm thickness.
The load–displacement curves of the experimental data and the
numerical results for P36-00, P36-33 and P36-67 specimens are
shown in Fig. 19 and their ultimate loads are listed in Table 2.
Generally, the results of the numerical analyses are in good
agreement with the experimental data.

Similar to P24 specimens, the steel tube of all the specimens
yields first. After the concrete reaches its ultimate strength, the
entire CFT column starts to soften up to failure. Again, the change
of the load ratio does not influence the ultimate strength of CFT
columns significantly. However, when the load ratio becomes
large, the CFT columnwould exhibit more softening behavior after
its ultimate strength been reached. This phenomenon is more
prominent for CFT columns having thicker gusset plates than those
having thinner gusset plates (Figs. 14, 17 and 19). From Table 2,
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(a) PH24-00

(b) PH24-33

(c) PH24-67

Fig. 22. Deformation shapes of specimens PH24-00, PH24-33 and PH24-67.

we can observe that the increasing of the thickness of the gusset
plate does slightly increase the ultimate strength of CFT columns.
However, this increasing in the ultimate load is not significantly.

Fig. 20 shows the deformation shapes of the CFT columns as
the specimens approach failure. Comparing Fig. 20 with Figs. 18
and 15, we can conclude that the increasing of the thickness of the
gusset plate does not influence the failure patterns of CFT columns
significantly.

4.8. Simulations of the PH24 specimens

The PH24 specimens have gusset plates with 24 mm thickness
and have two circular cutouts on the gusset plates (Fig. 2).

The load–displacement curves of the experimental data and the

numerical results for PH24-00, PH24-33 and P24-67 specimens are

shown in Fig. 21 and their ultimate loads are listed in Table 2.

Generally, the results of the numerical analyses are in good

agreement with the experimental data.

Similar to the P24 specimens, the steel tube of all the specimens

yields first. After the concrete reaches its ultimate strength, the

entire CFT column starts to soften up to failure. From Fig. 21

and Table 2, we can observe again that the change of the load

ratio does slightly increase the ultimate strength of CFT columns.

When the load ratio becomes large, the CFT column would exhibit

more softening behavior after its ultimate strength been reached.

Comparing the ultimate strengths of PH24 specimens with those

of P24 specimens (Table 2), we can see that the introduction of

the cutouts on the gusset plates does slightly increase the ultimate

strengths of CFT columns. This is becausewhen the concrete fills in

the cutouts on the gusset plates, more contact areas are generated

between concrete and steel gusset plate. As the result, the entire

connection areas are reinforced.

Fig. 22 shows the deformation shapes of the CFT columns

as the specimens approach failure. Again, it can be seen that

the deformation of the column below the gusset plate is greater

than those at other places. Local bulged shapes of the steel tube

take place in the areas close to the gusset plate and the fixed

end. Comparing Fig. 22 with Fig. 18, we could observe that the

introducing of the cutouts on the gusset plate causes more local

bulged shapes on the steel tubes below the connection area. This

is also consistent with the experimental results as shown by the

photos [26] in Fig. 23.

4.9. Simulations of the PH36 specimens

The PH36 specimens have gusset plates with 36 mm thickness

and have three circular cutouts on the gusset plates (Fig. 2).

The load–displacement curves of the experimental data and the

numerical results for PH36-00, PH36-33 and P36-67 specimens are

shown in Fig. 24 and their ultimate loads are listed in Table 2.

Generally, the results of the numerical analyses are in good

agreement with the experimental data.

Similar to the P36 specimens, the steel tube of all the specimens

yields first. After the concrete reaches its ultimate strength, the

entire CFT column starts to soften up to failure. From Fig. 24

and Table 2, we can observe again that the change of the load

ratio does slightly increase the ultimate strength of CFT columns.

   

Fig. 23. Failure patterns of specimens PH24-00, PH24-33 and PH24-67 [26].
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Fig. 24. Load–displacement curves of specimens PH36-00, PH36-33 and PH36-67.

When the load ratio becomes large, the CFT column would exhibit
more softening behavior after its ultimate strength been reached.
Comparing the numerically calculated ultimate strengths of PH36
specimens with those of P36 specimens (Table 2), we can see that
the introduction of the cutouts on the gusset plates does slightly
increase the ultimate strengths of CFT columns. However, this
phenomenon is not observed in the experimental data and more
investigation is needed.

Fig. 25 shows the deformation shapes of the CFT columns as
the specimens approach failure. Again, it can be seen that the
deformation of the column below the gusset plate is greater than
those at other places. Local bulged shapes of the steel tube take
place in the areas close to the gusset plate and the fixed end.
Comparing Fig. 25 with Fig. 20, we could also observe that the
introducing of the cutouts on the gusset plate causes more local
bulged shapes on the steel tubes below the connection area.

5. Conclusions

In this paper, nonlinear finite element analyses of CFT-
to-Bracing connections subjected to axial compressive force

(b) PH36-33

(a) PH36-00

(c) PH36-67

Fig. 25. Deformation shapes of specimens PH36-00, PH36-33 and PH36-67.

are performed. Based on the numerical results, the following
conclusions may be drawn:

(1) The value of the friction coefficient μ between the con-
crete–tube contact surface, the concrete–gusset plate con-
tact surface and the tube–gusset plate contact surface does
not have significant influence on the behavior of the CFT-to-
Bracing connections.

(2) When the load ratio becomes large, the CFT columnwith gusset
plate would exhibit more softening behavior after its ultimate
strength been reached. This phenomenon is more prominent
for CFT columns having thicker gusset plates than those having
thinner gusset plates. In addition, the ultimate strengths of the
CFT columns might slightly increase with the increasing of the
load ratio.

(3) The deformation of the CFT column below the gusset plate is
greater than those of other places. Local bulged shapes of the
steel tubemight take place in the areas close to the gusset plate
and the fixed end.

(4) The increasing of the thickness of the gusset plate and the
introduction of the cutouts on the gusset plates slightly
increase the ultimate strengths of CFT columns. Generally, the
use of thicker gussets or holes in the gussets is to increase the
force transfer of the gusset connection. The holes and thicker
gusset should increase the connection transfer capability but
they would not affect the column capacity too much.

(5) The introducing of the cutouts on the gusset plate would
cause more local bulged shapes on the steel tubes below the
connection area under the failure stage.
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