
Composite Structures 92 (2010) 1640–1650
Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct
Constitutive modeling of reinforced concrete and prestressed concrete
structures strengthened by fiber-reinforced plastics

H.-T. Hu *, F.-M. Lin, H.-T. Liu, Y.-F. Huang, T.-C. Pan
Department of Civil Engineering and Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan, ROC
a r t i c l e i n f o

Article history:
Available online 26 November 2009

Keywords:
Reinforced concrete
Prestressed concrete
Strengthened
Fiber-reinforced plastics
0263-8223/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.compstruct.2009.11.030

* Corresponding author. Tel.: +886 6 2757575; fax:
E-mail address: hthu@mail.ncku.edu.tw (H.-T. Hu)
a b s t r a c t

A batch of constitutive models for steel reinforcing bar, prestressing tendon, concrete and fiber-reinforced
plastic are proposed for the nonlinear finite element analysis of reinforced concrete structures, pre-
stressed concrete structures, reinforced concrete structures strengthened by fiber-reinforced plastics
and prestressed concrete structures strengthened by fiber-reinforced plastics. These material models
have been tested against series of experimental data and good agreements have been obtained, which
justifies the validity and the usefulness of the proposed nonlinear constitutive models.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction capability and generality of these proposed material models suit-
Due to lightweight, high strength and good fatigue and corro-
sion properties, fiber-reinforced plastics (FRP) have been inten-
sively used in the repair and strengthening of aerospace
structures [1–4]. Though, the study of using FRP to strengthen
concrete structures just started in the 1990s [5–16], the technology
is currently widely used for both reinforced concrete structures
[17–25] as well as prestressed concrete structures [26–33].

To study the behavior of reinforced concrete and prestressed
concrete structures strengthened by FRP, the fundamental step is
to understand the nonlinear behavior of the constitutive materials
such as steel reinforcing bar, prestressing tendon, concrete and
FRP, separately. The nonlinear behavior of concrete such as
concrete cracking, tension stiffening, shear retention, concrete
plasticity, yielding of reinforcing steel and yielding of prestressing
tendon have been extensively studied by various researchers and
numerous proper constitutive laws have been proposed [34–40].
However, in the literature, most studies of reinforced concrete
structures strengthened by FRP have assumed that the behavior
of FRP is linear. It is well known that unidirectional fibrous
composites exhibit severe nonlinearity in their in-plane shear
stress–strain relations [41]. In addition, deviation from linearity
is also observed with in-plane transverse loading but the degree
of nonlinearity is not comparable to that observed with the
in-plane shear [41,42]. Therefore, appropriate modeling of the non-
linear behavior of FRP becomes crucial.

In this investigation, proper constitutive models are introduced
to simulate the nonlinear behavior of steel reinforcing bar, pre-
stressing tendon, concrete and FRP. In order to demonstrate the
ll rights reserved.
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able to model the behaviors of reinforced concrete and prestressed
concrete structures strengthened by FRP, a series of numerical
analyses are carried out by using the finite element program Aba-
qus [43] and are compared with the experimental results.

2. Material properties and constitutive models

The materials used in the analysis involve steel reinforcing bars,
prestressing tendon, concrete and fiber-reinforced plastics. Reli-
able constitutive models applicable to steel reinforcing bars, pre-
stressing tendon and concrete are available in the Abaqus
material library. Thus, their input material properties and associ-
ated constitutive models are briefly discussed. The Abaqus pro-
gram does not have a nonlinear material library for FRP. Hence,
its nonlinear constitutive model is discussed here in detail. The
resulting nonlinear constitutive equations for the FRP are coded
in FORTRAN language as a subroutine and linked to the Abaqus
program.

2.1. Steel reinforcing bar

The elastic modulus of the steel reinforcement used in the anal-
yses is assumed to be

Es ¼ 200 GPa ð1Þ

The stress–strain curve of the reinforcing bar is assumed to be
elastic perfectly plastic.

2.2. Prestressing tendon

Unless specified, the elastic modulus of the prestressing tendon
used in the analyses is also assumed to be Es = 200 GPa. Based on
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Fig. 1. Concrete failure surface in-plane stress.

Fig. 2. Tension stiffening model.
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the material tested data, the nonlinear stress–strain curve of the
tendon can be simplified to a piecewise linear curve and input to
Abaqus.

In Abaqus, the prestressing tendon and the steel reinforcement
are treated as equivalent uniaxial materials, which are smeared
through the element section. In order to properly model the consti-
tutive behaviors of the tendon and the reinforcement, the cross
sectional area, spacing, position and orientation of each layer of
tendon or steel bar within each element need to be specified.

2.3. Concrete

The Poisson’s ratio mc of concrete under uniaxial compressive
stress ranges from 0.15 to 0.22, with a representative value of
0.19 or 0.20 [34]. In this study, the Poisson’s ratio of concrete is as-
sumed to be

mc ¼ 0:2 ð2Þ

Let the uniaxial compressive strength and the corresponding
strain of the concrete be f 0c and e0c. The value of e0c is usually around
the range of 0.002–0.003. A representative value suggested by ACI
Committee 318 [44] and used in the analysis is

eo ¼ 0:003 ð3Þ

The uniaxial tensile strength f 0t of concrete is difficult to mea-
sure. For this study the value is taken as [34]

f 0t ¼ 0:33
ffiffiffiffi
f 0c

q
MPa ð4Þ

The initial modulus of elasticity of concrete Ec is highly corre-
lated to its compressive strength and can be calculated with rea-
sonable accuracy from the empirical equation [44]

Ec ¼ 4700
ffiffiffiffi
f 0c

q
MPa ð5Þ

Under multiaxial combinations of loading, the failure strengths
of concrete are different from those observed under uniaxial condi-
tion. However, the maximum strength envelope under multiple
stress conditions seems to be largely independent of load path
[45]. In Abaqus, a Mohr–Coulomb type compression surface to-
gether with a crack detection surface is used to model the failure
surface of concrete (Fig. 1). When the principal stress components
of concrete are in biaxial compression zone, the response of the
concrete is modeled by an elastic–plastic theory with an associated
flow and an isotropic hardening rule. When the principal stress
components of concrete are in biaxial tension zone or in biaxial
tension–compression zone, cracking of concrete is defined to occur
by the crack detection surface. Once cracking of concrete takes
place, the orientation of the crack is stored. Damaged elasticity is
then used to model the existing crack [43].

When plastic deformation occurs, there should be a certain
parameter to guide the expansion of the yield surface. A commonly
used approach is to relate the multidimensional stress and strain
conditions to a pair of quantities, namely, the effective stress rc

and effective strain ec , such that results obtained following differ-
ent loading paths can all be correlated by means of the equivalent
uniaxial stress–strain curve. The stress–strain relationship pro-
posed by Saenz [46] has been widely adopted as the uniaxial
stress–strain curve for concrete and it has the following form:

rc ¼
Ecec

1þ ðRþ RE � 2Þ ec
eo

� �
� ð2R� 1Þ ec

eo

� �2
þ R ec

eo

� �3 ð6Þ

where

R ¼ REðRr � 1Þ
ðRe � 1Þ2

� 1
Re
; RE ¼

Ec

Eo
; Eo ¼

f 0c
eo
and Rr = 4, Re = 4 may be used [38]. In the analysis, Eq. (6) is taken
as the equivalent uniaxial stress–strain curve for concrete and
approximated by several piecewise linear segments inputted to
Abaqus.

When cracking of concrete takes place, a smeared model is used
to represent the discontinuous macrocrack behavior. It is known
that the cracked concrete of a reinforced concrete element can still
carry some tensile stress in the direction normal to the crack,
which is termed tension stiffening [34]. In this study, a simple
descending line is used to model this tension stiffening phenome-
non (Fig. 2). The default value of the strain e� at which the tension
stiffening stress reduced to zero is [43]

e� ¼ 0:001 ð7Þ

During the postcracking stage, the cracked reinforced concrete
can still transfer shear forces through aggregate interlock or shear
friction, which is termed shear retention. Assuming that the shear
modulus of intact concrete is Gc, then the reduced shear modulus bG
of cracked concrete can be expressed as

bG ¼ lGc ð8Þ
l ¼ ð1� e=emaxÞ ð9Þ

where e is the strain normal to the crack direction and emax is the
strain at which the parameter l reduces to zero. Numerous analyt-
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ical results have demonstrated that the particular value chosen
for l (between 0 and 1) does not appear to be critical but values
greater than zero are necessary to prevent numerical instabilities
[34,39]. In Abaqus, emax is usually assumed to be a very large value,
i.e., l = 1 (full shear retention). In this investigation, the default val-
ues for tension stiffening parameter e* = 0.001 and for shear reten-
tion parameter l = 1 are used.

2.4. Fiber-reinforced plastics

For fiber-reinforced plastics (Fig. 3), each lamina can be consid-
ered as an orthotropic layer in a plane stress condition. It is well
known that unidirectional fibrous composites exhibit severe non-
linearity in their in-plane shear stress–strain relation. In addition,
deviation from linearity is also observed with in-plane transverse
loading but the degree of nonlinearity is not comparable to that
in the in-plane shear [41]. Usually, this nonlinearity associated
with the transverse loading can be ignored [42]. To model the non-
linear in-plane shear behavior, the nonlinear strain–stress relation
for a composite lamina suggested by Hahn and Tsai [41] is adopted
as follows:

e1

e2

c12

8><
>:

9>=
>; ¼

1
E11

� m21
E22

0

� m12
E11

1
E22

0

0 0 1
G12

2
664

3
775

r1

r2

s12

8><
>:

9>=
>;þ S6666s2

12

0
0
s12

8><
>:

9>=
>; ð10Þ

In this model only one constant S6666 is required to account for
the in-plane shear nonlinearity. The value of S6666 can be deter-
mined by a curve fit to various off-axis tension test data [41]. Let
us define D{r0} = D{r1, r2, s12}T and D{e0} = D{e1, e2, c12}T. Invert-
ing and differentiating Eq. (10), the incremental stress–strain rela-
tions are established.

Dfr0g ¼ ½Q 01�Dfe0g ð11Þ

½Q 01� ¼

E11
1�m12m21

m12E22
1�m12m21

0
m21E11

1�m12m21

E22
1�m12m21

0

0 0 1
1=G12þ3S6666s2

12

2
6664

3
7775 ð12Þ

Furthermore, it is assumed that the transverse shear stresses
always behave linearly and do not affect the nonlinear behavior
of any in-plane shear. If we define Dfs0tg ¼ Dfs13; s23gT and
Dfc0tg ¼ Dfc13; c23g

T, the constitutive equations for transverse shear
stresses become

Dfs0tg ¼ ½Q
0
2�Dfc0tg ð13Þ

½Q 02� ¼
a1G13 0

0 a2G23

� �
ð14Þ
Fig. 3. Material, element and structure coordinates of fiber-reinforced plastics.
where a1 and a2 are the shear correction factors and are taken to be
0.83 in this study.

Among existing failure criteria, the Tsai–Wu criterion [47] has
been extensively used in the literature and is adopted in this anal-
ysis. Under plane stress conditions, this failure criterion has the fol-
lowing form:

F1r1 þ F2r2 þ F11r2
1 þ 2F12r1r2 þ F22r2

2 þ F66s2
12 ¼ 1 ð15Þ

with

F1 ¼
1
X
þ 1

X 0
; F2 ¼

1
Y
þ 1

Y 0
; F11 ¼

�1
XX0

; F22 ¼
�1
YY 0

; F66 ¼
1
S2

The X;Y and X 0;Y 0 are the lamina longitudinal and transverse
strengths in tension and compression, respectively, and S is the
shear strength of the lamina. Though the stress interaction term
F12 in Eq. (15) is difficult to be determined, it has been suggested
that F12 can be set equal to zero for practical engineering applica-
tions [48]. Therefore, F12 = 0 is used in this investigation.

During the numerical calculation, incremental loading is ap-
plied to composite plates until failures in one or more of individual
plies are indicated according to Eq. (15). Since the Tsai–Wu crite-
rion does not distinguish failure modes, the following two rules
are used to determine whether the ply failure is caused by resin
fracture or fiber breakage [49]:

(1) If a ply fails but the stress in the fiber direction remains less
than the uniaxial strength of the lamina in the fiber direc-
tion, i.e. X 0 < r1 < X, the ply failure is assumed to be resin
induced. Consequently, the laminate loses its capability to
support transverse and shear stresses, but remains to carry
longitudinal stress. In this case, the constitutive matrix of
the lamina becomes
½Q 01� ¼
E11 0 0
0 0 0
0 0 0

2
64

3
75 ð16Þ
(2) If a ply fails with r1 exceeding the uniaxial strength of the
lamina, the ply failure is caused by the fiber breakage and
a total ply rupture is assumed. In this case, the constitutive
matrix of the lamina becomes
½Q 01� ¼
0 0 0
0 0 0
0 0 0

2
64

3
75 ð17Þ
During a finite element analysis, the constitutive matrix of com-
posite materials at the integration points of shell elements must be
calculated before the stiffness matrices are assembled from the
element level to the structural level. For composite materials, the
incremental constitutive equations of a lamina in the element
coordinates (x, y, z) can be written as:

Dfrg ¼ ½Q 1�Dfeg ð18Þ
Dfstg ¼ ½Q2�Dfctg ð19Þ

where Dfrg ¼ Dfrx;ry; sxygT, Dfsg ¼ Dfsxz; syzgT, Dfeg ¼ Dfex; ey;

cxyg
T, Dfcg ¼ Dfcxz; cyzg

T, and

½Q 1� ¼ ½T1�T½Q 01�½T1� ð20Þ
½Q 2� ¼ ½T2�T½Q 02�½T2� ð21Þ

½T1� ¼
cos2 h sin2 h sin h cos h

sin2 h cos2 h � sin h cos h

�2 sin h cos h 2 sin h cos h cos2 h� sin2 h

2
64

3
75 ð22Þ



Table 1
Prestress, lateral reinforcement and ultimate load for Durrani–Elias specimens.
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½T2� ¼
cos h sin h

� sin h cos h

� �
ð23Þ

The h is measured counterclockwise from the element local x-
axis to the material 1-axis (Fig. 3). Let D{e}o = D{exo, eyo, exyo}T be
the incremental in-plane strains at the mid-surface of the shell sec-
tion and D{j} = D{jx, jy, jxy}T the incremental curvatures. The
incremental in-plane strains at a distance z from the mid-surface
of the shell section become

Dfeg ¼ Dfeog þ zDfjg ð24Þ

Let h be the total thickness of the composite shell section, the
incremental stress resultants, D{N} = D{Nx, Ny, Nxy}T, D{M} = D{Mx,
My, Mxy}T and D{V} = D{Vx, Vy}T can be defined as:

DfNg
DfMg
DfVg

8><
>:

9>=
>; ¼

Z h=2

�h=2

Dfrg
zDfrg
Dfstg

8><
>:

9>=
>;dz ð25Þ

Substituting Eqs. (18), (19), and (24) into the above expression,
one can obtain the stiffness matrix for the fiber composite laminate
shell at the integration point as
Fig. 4. Durrani–Elias specimens for prestressed concrete columns.
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Fig. 5. Stress–strain relation of prestressing steel wire for Durrani–Elias specimens.
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where [0] is a 3 � 2 null matrix.
3. Numerical analysis

The validity of the material models for steel, FRP and reinforced
concrete has been verified individually by testing against experi-
mental data [43,50] and is not duplicated here. The validity of
these material models to simulate the behavior of prestressed con-
crete, reinforced concrete strengthened by FRP and prestressed
concrete strengthened by FRP are demonstrated in this section.
In the numerical analyses, the Riks method [43,51] in Abaqus is
used to carry out the nonlinear finite element solutions.
Specimens Prestress
(MPa)

Spacing of
lateral
reinforcement
(mm)

Ultimate load (MPa)

Experimental Numerical Error
(%)

A11 930 None 36.7 36.4 0.82
A12 770 None 33.2 33.7 1.51
B2 770 51 38.6 37.9 1.81
B3 770 75 37.2 38.2 2.59
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Fig. 6. Stress–strain curves of prestressed concrete columns without lateral
reinforcement.
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3.1. Axially loaded prestressed concrete columns

To evaluate the ability of the proposed material responses in
modeling the prestressed concrete structures, the best starting
point is to test them against structures that are subjected to uni-
form compressive forces. For this purpose, the experimental work
of Durrani and Elias [52] is chosen.

The dimensions of the prestressed concrete columns are shown
in Fig. 4. The uniaxial compressive strength of the concrete is
f 0c ¼ 38 MPa. The columns have four prestressing steel wires and
each steel wire has a diameter of 5 mm. The stress–strain relation
of the wire is shown in Fig. 5. While the specimens A11 and A12 do
not have lateral reinforcement, the spacing of the steel lateral rein-
forcement of the specimens B2 and B3 are given in Table 1. The
steel lateral reinforcement has a diameter of 6 mm and a yield
stress fy = 620 MPa. The prestress applied to each specimen is also
given in Table 1. These specimens are fixed at one end and sub-
jected to axial compressive force at the other end up to failure.
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Fig. 7. Stress–strain curves of prestressed concrete columns with lateral
reinforcement.

Fig. 8. Rabczuk–Eibl specimen fo
Due to symmetry, only 1/8 portion of the specimen (the shaded
part in Fig. 4) is analyzed and symmetric boundary conditions are
placed along the symmetric planes. Based on the result of conver-
gence test [53], 8-node plane stress elements with reduced inte-
gration rule and with 1� 10 mesh (1 row in y-direction and 10
rows in z-direction) are used to model the prestressed concrete
columns. Figs. 6 and 7 show the axial stress versus axial strain
curves for all the four specimens. It can be seen that the proposed
material models are satisfactory in modeling the compressive
behavior of the prestressed concrete columns subjected to various
prestressing forces and with various lateral reinforcement spacing.
Generally, the calculated ultimate strengths are in good agreement
with the experiment results (Table 1).

3.2. Laterally loaded prestressed concrete beam

In this example, a prestressed I beam tested by Rabczuk and Eibl
[54] are studied. The dimensions of the beam can be found in Fig. 8.
r prestressed concrete beam.
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The uniaxial compressive strength of the concrete is f 0c ¼ 45 MPa.
The beam has two tension wires of 12 mm diameter at the lower
flange. Each wire was prestressed with a force of 80 kN. The diam-
eter of the upper reinforcement is 10 mm. The stress–strain rela-
tion of the wire is shown in Fig. 9. After the prestressed forces
are applied, the beam is subjected to four-point static load up to
failure.

Due to symmetry, only 1/4 portion of the specimen is analyzed
and symmetric boundary conditions are placed along the symmet-
ric planes. Based on the result of convergence test [53], 8-node
plane stress elements with reduced integration rule and with
21 � 5 mesh (21 row in x-direction and 5 rows in y-direction)
are used to model the prestressed concrete beam. Fig. 10 shows
the lateral load P versus vertical displacement u at the midspan
of the beam. It can be seen that the proposed material models
are satisfactory in modeling the flexural behavior of the pre-
stressed concrete beam subjected to lateral loading. The calculated
ultimate load Pu = 121 kN is also in good agreement with the
experiment result Pu = 120 kN.

3.3. Laterally loaded reinforced concrete beam strengthened by FRP

The validity of the proposed material models to simulate the
composite behavior of reinforced concrete beam strengthened by
FRP is examined in this section by comparing with the result of
beam experiment performed by Shahawy et al. [11]. The dimen-
sions of the test beam are given in Fig. 11. The beam is subjected
to four-point static load up to failure. The flexural reinforcement
is composed of two 13 mm diameter steel bars in tension zone
and two 3 mm diameter steel bars in compression zone. The yield-
ing strength ry of the reinforcing steel is 468.8 MPa and the com-
pressive strength f 0c of concrete is 41.37 MPa.

The beams were strengthened with either 2 or 3 layers of FRP
adhered to the bottom face of the beam with their fiber directions
oriented in the axial direction of the beam. Each FRP layer is
0.17 mm in thickness with tensile strength X ¼ 2758 MPa and
modulus E11 ¼ 141:3 GPa. To take the Tsai–Wu criterion into
account, the following parameters are assumed: X 0 ¼ Y 0 ¼ �27:58
MPa, Y ¼ S ¼ 27:58 MPa, E22 ¼ G12 ¼ 1413 MPa, S6666 ¼ 7:32
GPa�3, m12 = 0.21. Since the FRP layers are subjected to uniaxial
tension in fiber direction only, these assumed parameters would
not affect the uniaxial tensile behavior of the FRP.
Fig. 11. Shahawy et al. specimens
The beams have two planes of symmetry. Due to symmetry,
only 1/4 portion of the beam is analyzed and symmetric boundary
conditions are placed along the two symmetric planes. In the finite
element analysis, 8-node solid elements with reduced integration
rule are used to model the reinforced concrete beams. Based on
the result of convergence test [55], the mesh of the beam has 78
solid elements in total (26 rows in x-direction, 3 rows in y-direc-
for reinforced concrete beams.
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tion and 1 row in z-direction). Because the fiber-reinforced plastics
are relatively thin compared to the concrete beam, they are mod-
eled by the 4-node shell elements with reduced integration rule.
The FRP shell elements are attached to the bottom surface of the
beam directly and perfect bonding between FRP and the concrete
is assumed.

Fig. 12 shows the moment versus deflection curves of the beam
at the midspan. It can be observed that the correlations are quite
good between the numerical results and the experimental data.
For beam strengthened by 2 FRP layers, the predicted ultimate mo-
ment 54.3 kN-m is in good agreement with the experimental ulti-
mate moment 52.2 kN-m. The error is about 4.0%. For beam
strengthened by 3 FRP layers, the predicted ultimate moment
60.9 kN-m is also in good agreement with the experimental ulti-
mate moment 60.4 kN-m. The error is only 0.8%.

3.4. Laterally loaded reinforced concrete one-way slabs strengthened
by FRP

In this example, two reinforced concrete one-way slabs
strengthened by FRP and tested by Seim et al. [17] are studied.
The dimensions of the slab can be found in Fig. 13. The distance
from the extreme compression face to the centroid of the longitu-
dinal tension reinforcement was 83 mm. In the longitudinal direc-
tion, the reinforcement consisted of three #3 rebars (9.5 mm
diameter), whereas 23 #2 rebars (6.4 mm diameter) at 100 mm
spacing were placed in the transverse direction. The yielding
strength ry of the reinforcing steel is 462 MPa and the compressive
strength f 0c of concrete is 33.2 MPa.

Each slab was strengthened with 2 FRP strips adhered to the
bottom face of the slab with their fiber directions oriented in the
longitudinal direction (Fig. 13). Two different lengths of strip, i.e.
L = 1830 mm (full length) or 1460 mm (median length), were used.
Each FRP strip is 1.19 mm in thickness with tensile strength
X ¼ 2270 MPa and modulus E11 = 198 GPa. In addition, the follow-
ing parameters are assumed: m12 = 0.21, X 0 ¼ Y 0 ¼ �22:7 MPa,
Y ¼ S ¼ 22:7 MPa, E22 = G12 = 1980 MPa, S6666 = 7.32 GPa�3 .

The slabs have two planes of symmetry. Due to symmetry, only
1/4 portion of the slab is analyzed and symmetric boundary condi-
tions are placed along the two symmetric planes. In the finite ele-
ment analysis, 8-node shell elements with reduced integration rule
are used to model the reinforced concrete slabs. Based on the result
Fig. 13. Seim et al. specimens for rei
of convergence test [55], the finite element mesh has 27 reinforced
concrete shell elements in total (9 rows in the longitudinal direc-
tion, 3 rows in the transverse direction). The fiber-reinforced plas-
tics are also modeled by the 8-node shell elements with reduced
integration rule and perfect bonding between FRP and the slab is
nforced concrete one-way slabs.
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assumed. For slab with strip of full length, 7 FRP shell elements are
used. For slab with strip of median length, 6 FRP shell elements are
employed. In the experiment, when the slabs failed, the longitudi-
nal strain in the FRP strips is measured and is equal to 0.0065. This
maximum strain criterion, i.e. e1 6 0.0065, is used together with
the Tsai–Wu criterion for FRP in this numerical analysis.

Fig. 14 shows the lateral load P versus vertical displacement u at
the midspan of the slabs. It can be observed that the correlation is
quite good between the numerical result and the experimental
data. For slab strengthened by FRP strips of median length, the pre-
dicted ultimate load 41.8 kN is in good agreement with the exper-
imental ultimate load 41.9 kN. The error is only 0.2%. For slab
strengthened by FRP strips of full length, the predicted ultimate
load 41.5 kN is also in good agreement with the experimental ulti-
mate load 42.5 kN. The error is about 2.4%. The ultimate loads of
these two strengthened slabs are very close. This indicates that
the use of FRP strips of full length to strengthen the slab may not
be necessary.

3.5. Laterally loaded reinforced concrete two-way slabs strengthened
by FRP

In this example, two square reinforced concrete two-way slabs
tested by Mosallam and Mosalam [20] are studied. The clear span
of the two-way slabs in both directions was 264 cm with constant
thickness of 76.2 mm as shown in Fig. 15. The slabs are simply sup-
ported at the four edges and are subjected to a uniform static pres-
sure applied to the bottom surface of the slabs up to failure. The
compressive strength f 0c of concrete is 41.37 MPa. Both reinforced
concrete slabs were fabricated using Grade 60 reinforcing steel
with the yielding strength ry equal to 414 MPa. Tension (top) rein-
forcement consisted of #3 rebars (9.5 mm diameter) at 305 mm
equal spacing in the two orthogonal directions of each slab with
13 mm cover. While one specimen is purely reinforced concrete
Fig. 15. Mosallam–Mosalam specimens fo
slab, the other specimen is strengthened by two FRP layers spaced
at 457 mm and adhered to the top side with their fiber directions
oriented in the two orthogonal directions of the slab (Fig. 15). At
the intersection regions of the staggered unidirection laminates,
a bidirectional fiber architecture, i.e. [90/0/90/0] lamination layup,
was formed. Each FRP layer is 0.58 mm in thickness with tensile
strength X ¼ 1246 MPa and modulus E11 ¼ 104 GPa. In addition,
the following parameters are assumed: m12 = 0.3, X0 ¼ �1246
MPa, Y ¼ 187 MPa, Y 0 ¼ �93 MPa, S ¼ 93 MPa, E22 ¼ 6:75 GPa,
G12 ¼ 7:1 GPa, S6666 ¼ 7:32 GPa�3.

The slabs have two planes of symmetry. Due to symmetry, only
1/4 portion of the slab is analyzed and symmetric boundary condi-
tions are placed along the two symmetric planes. In the finite ele-
ment analysis, 8-node shell elements with reduced integration rule
are used to model the reinforced concrete slabs. Based on the result
of convergence test [55], the finite element mesh has 25 reinforced
concrete shell elements in total (5 rows in each FRP strip direction).
The fiber-reinforced plastics are also modeled by the 8-node shell
elements with reduced integration rule and perfect bonding be-
tween FRP and the slab is assumed. For slab strengthened with
FRP strips, 21 FRP shell elements are used.

Fig. 16a shows the total lateral force versus vertical displace-
ment at the midspan of the reinforced concrete two-way slab not
strengthened by FRP. It can be observed that the correlation is
quite good between the numerical result and the experimental
data. The predicted ultimate load 217 kN is in good agreement
with the experimental ultimate load 219 kN with an error of
0.9%. This again verifies the validity of the proposed material mod-
els to model the behavior of reinforced concrete structures.

Fig. 16b shows the total lateral force versus vertical displace-
ment at the midspan of the reinforced concrete two-way slab
strengthened by FRP. It can be observed that the correlation is also
quite good between the numerical result and the experimental
data. The predicted ultimate load 394 kN is in good agreement
r reinforced concrete two-way slabs.
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Fig. 17. Shahawy et al. specimen for prestressed concrete solid slab.
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with the experimental ultimate load 404 kN with an error of 2.5%.
This again verifies the validity of the proposed material models to
model the behavior of reinforced concrete structures strengthened
by FRP.

Comparing Fig. 16b with Fig. 16a, we can find that the ultimate
load of the slab is significantly increased by about 84%, which
proves the usefulness of FRP to strengthen reinforced concrete
structures.

3.6. Laterally loaded prestressed concrete solid slab strengthened by
FRP

In this example, prestressed concrete solid slab tested by Sha-
hawy et al. [10] is studied. The test setup for the solid slab is shown
in Fig. 17. The compressive strength f 0c of the concrete is 41.37 MPa.
The pretensioned solid slab has 16 low relaxation strands and the
diameter of each strand is 13 mm. The ultimate strength of the pre-
stressing steel is 1862 MPa and the jacking force in each strand is
maintained at 138 kN. The elastic modulus of the prestressing
strands is assumed to be Es = 190 GPa and the assumed stress–
strain relation of the strand is shown in Fig. 18. The FRP layer is
0.17 mm in thickness with tensile strength X ¼ 2758 MPa and
modulus E11 = 141.3 GPa. In addition, the following parameters
are assumed: Y ¼ S ¼ 27:5 MPa, X 0 ¼ Y 0 ¼ �27:5 MPa, E22 = G12 =
1413 MPa, S6666 = 0, m12 = 0.21.

In the experiment, the prestressed concrete slab is simply sup-
ported at two ends (Fig. 17). The slab is subjected to four-point sta-
tic loading up to its ultimate capacity and unloaded. Then, three
FRP layers are bonded to the tension face of the slab. After a com-
plete cure of the adhesive, the retrofitted slab is tested again under
four-point loading. Since the retrofitted concrete slab is pre-
cracked, the compressive strength of the precracked concrete
should be smaller than that of the intact concrete. Therefore,
f 0c ¼ 35 MPa with a 15% reduction [56] is used in the numerical
analysis.

The slab has two planes of symmetry. Therefore, only 1/4 por-
tion of the slab is analyzed and symmetric boundary conditions
are placed along the two symmetric planes. In the finite element
analysis, 8-node solid elements with reduced integration rule are
used to model the prestressed concrete slabs. Based on the result
of convergence test [57], the finite element mesh has 54 solid ele-
ments in total (9 rows in x-direction, 3 rows in y-direction, 2 rows
in z-direction). The fiber-reinforced plastics are modeled by the
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4-node shell elements with reduced integration rule and perfect
bonding between FRP and the slab is assumed.

Fig. 19 shows the moment verse deflection curves of the retro-
fitted prestressed concrete solid slab at the loading points. It can be
observed that the correlation is quite good between the numerical
result and the experimental data. The predicted ultimate load
519 kN-m is in good agreement with the experimental ultimate
load 530 kN-m with an error of 2.1%. This verifies the validity of
the proposed material models to model the behavior of prestressed
concrete structures strengthened by FRP.

4. Conclusions

As a conclusion, the good agreement obtained in these sets of
examples between the numerical predictions and the experimental
results establishes the validity and accuracy of using the proposed
nonlinear constitutive models for steel reinforcing bars, prestress-
ing tendons, concrete and fiber-reinforced plastics in modeling the
behavior of reinforced concrete structures, prestressed concrete
structures, reinforced concrete structures strengthened by fiber-
reinforced plastics and prestressed concrete structures strength-
ened by fiber-reinforced plastics.

It should be noted that in these sets of experimental works, the
FRP strips are placed either in the longitudinal direction or in the
transverse direction on the tension side of the concrete structures.
These FRP strips are primarily subjected to uniaxial tensile stresses
or biaxial tensile stresses. Consequently, the nonlinear shear effect
of FRP is not significant and the numerical results obtained by the
nonlinear shear constitutive model are almost the same as those
obtained by the linear shear constitutive model. However, the
authors’ previous study has shown that when the FRP strips are
subjected to shear stresses, the nonlinear shear effect is significant.
For such cases, nonlinear shear constitutive model for FRP
strengthening is an actual improvement [58].

In the analysis, the composite strips are assumed to be perfectly
bonded to the concrete surface. This no slip assumption has also
been used by many investigators [13,59,60]. Existing test data sug-
gest that the main failure mode is concrete failure, leading to crack
propagation parallel to the bonded FRP adjacent to the adhesive-
to-concrete interface [61]. A very important aspect of bond behav-
ior is that there exists an effective bond length beyond which an
extension of the bond length cannot increase the bond strength
as well as the ultimate load of the strengthened concrete structure
[61–63]. As long as the criterion of the effective bond length has
been fulfilled, it is quite justifiable to use the perfect bonding
assumption. The good correlations between the numerical predic-
tions and the experimental results from this investigation demon-
strate the validity of the perfect bonding assumption.
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