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Free vibration analyses of rectangular- and square-composite laminated plates subjected to uniaxial compressive

forces are carried out by employing the ABAQUS finite element program. The fundamental frequencies of

rectangular- and square-composite laminated plateswith a givenmaterial systemare thenmaximizedwith respect to

fiber orientations by using the golden section method. Through a parametric study, the significant influences of end

conditions, plate aspect ratio, circular cutout, and compressive force on the maximum fundamental frequencies and

the associated optimal fiber orientations are demonstrated and discussed.

I. Introduction

T HE applications of fiber-composite laminate materials to
aerospace industrial such as spacecraft, high-speed aircraft, and

satellite have increased rapidly in recent years. The most major
components of the aerospace structures are frequentlymade of plates
and subjected to various kinds of compression. Therefore,
knowledge of the dynamic characteristics of composite laminated
plates in compression, such as their fundamental natural frequency,
is essential.

The fundamental natural frequency of composite laminated plates
subjected to compression highly depends on the ply orientation
(Noor and Burton [1], Tenek [2], Chen et al. [3], Chakrabarti
et al. [4]), end conditions (Chakrabarti et al. [4], Dhanaraj and
Palanininathan [5], Sundaresan et al. [6], Nayak et al. [7]), aspect
ratio (Chen et al. [3], Chakrabarti et al. [4]), thickness (Chen et al. [3],
Chakrabarti et al. [4], Nayak et al. [7]), cutout (Tenek [2]), and
compressive force (Chen et al. [3], Chakrabarti et al. [4], Dhanaraj
and Palanininathan [5], Nayak et al. [7]). Therefore, proper selection
of appropriate lamination to maximize the fundamental frequency of
composite laminated plates in compression becomes a crucial
problem (Bert [8], Abrate [9], Raouf [10], Topal and Uzman [11]).

Research on the subject of structural optimization has been
reported by many investigators (Schmit [12]) and has been widely
employed to study the dynamic behavior of composite structures
(Abrate [9], Topal and Uzman [11], Hu and Ho [13], Hu and Juang
[14], Hu and Ou [15], Hu and Tsai [16], Narita [17], Hu and Wang
[18]). Among various optimization schemes, the golden section
method is a simple technique and can be easily programmed for
solutions on the computer (Vanderplaats [19], Haftka et al. [20]). In
this investigation, maximization of the fundamental natural
frequency of composite laminated plates in compression with
respect to fiber orientations is performed by using the golden section
method. The fundamental frequencies of composite laminated plates
are calculated by using the ABAQUS finite element program
(ABAQUS, Inc. [21]). In the paper, the vibration analysis and the
golden section method are briefly reviewed. The influence of end
conditions, plate aspect ratio, circular cutout, and compressive force
on the maximum fundamental natural frequency and the associated

optimal fiber orientations of the laminated plates is presented, and
important conclusions obtained from this study are given.

II. Constitutive Matrix for Fiber-Composite Laminae

In the finite element analysis, the laminated cylindrical shells are
modeled by eight-node isoparametric shell elements with 6 degrees
of freedom per node (three displacements and three rotations). The
reduced integration rule together with hourglass stiffness control is
employed to formulate the element stiffness matrix (ABAQUS, Inc.
[21]).

During the analysis, the constitutive matrices of composite
materials at element integration points must be calculated before the
stiffness matrices are assembled from element level to global level.
For fiber-composite laminate materials, each lamina can be
considered as an orthotropic layer. The stress-strain relations for a
lamina in the material coordinate (1, 2, 3) (Fig. 1) at an element
integration point can be written as
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where f�0g � f�1; �2; �12gT , f�0g � f�13; �23gT , f"0g � f"1; "2; �12gT ,
and f� 0g � f�13; �23gT . The �1 and �2 in Eq. (2) are shear correction
factors, which are calculated in ABAQUS by assuming that the
transverse shear energy through the thickness of laminate is equal to
that in unidirectional bending (ABAQUS, Inc. [21], Whitney [22]).

The constitutive equations for the lamina in the element coordinate
�x; y; z� then become

f�g � �Q1�f"g; �Q1� � �T1�T �Q01��T1� (3)

f�g � �Q2�f�g; �Q2� � �T2�T �Q02��T2� (4)
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where f�g � f�x; �y; �xygT , f�g � f�xz; �yzgT , f"g � f"x; "y; �xygT ,
f�g � f�xz; �yzgT , and the fiber orientation � is measured
counterclockwise from the element local x axis to thematerial 1 axis.
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Let f"go � f"xo; "yo; "xyogT be the in-plane strains at the
midsurface of the laminate section, f�g � f�x; �y; �xygT the
curvatures, and h the total thickness of the section. If there are
n layers in the laminate section, the stress resultants fNg�
fNx;Ny; NxygT , fMg � fMx;My;MxygT , and fVg � fVx; VygT can
be defined as
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The zjt and zjb are the distance from the midsurface of the section to
the top and the bottom of the j-th layer, respectively. The [0] is a 3 by
2 matrix with all the coefficients equal to zero.

III. Vibration Analysis

For the free vibration analysis of an undamped structure, the
equation of motion of the structure can be written in the following
eigenvalue expression (Cook et al. [23]):

�M�f �Dg � �K�fDg � f0g (7)

where fDg is a vector for the unrestrained nodal degrees of freedom,

f �Dg an acceleration vector, �M� the mass matrix of the structure, �K�
the stiffness matrix of the structure, and f0g a zero vector. Because
fDg undergoes harmonic motion, we can express

fDg � f �Dg sin!t; f �Dg � �!2f �Dg sin!t (8)

where the f �Dg vector contains the amplitudes of fDg vector. Then
Eq. (7) can be written in an eigenvalue expression as

��K� � !2�M��f �Dg � f0g (9)

When a laminated plate is subjected to compressive force, initial
stresses are generated in the plate. Consequently, the stiffness matrix
�K� in Eq. (9) can be separated into two matrices as

�K� � �KL� � �K� � (10)

The �KL� is the traditional linear stiffness matrix and �K� � is a
geometric stress stiffness matrix due to the initial stresses. Then
Eq. (9) becomes

��KL� � �K� � � !2�M��f �Dg � f0g (11)

The preceding equation is an eigenvalue expression. If f �Dg is not a
zero vector, we must have

j�KL� � �K� � � !2�M�j � 0 (12)

InABAQUS, a subspace iteration procedure (ABAQUS, Inc. [21]) is
used to solve for the natural frequency !, and the eigenvectors (or

vibration modes) f �Dg. The obtained smallest natural frequency
(fundamental frequency) is then the objective function for
maximization.

IV. Golden Section Method

We begin by presenting the golden section method (Vanderplaats
[19];Haftka et al. [20]) for determining theminimumof the unimodal
function F, which is a function of the independent variable X. It is
assumed that lower bound XL and upper bound XU on X are known,
and the minimum can be bracketed (Fig. 2). In addition, we assume
that the function has been evaluated at both bounds, and the
corresponding values are FL and FU. Now we can pick up two
intermediate points X1 and X2 such that X1 < X2 and evaluate the
function at these two points to provide F1 and F2. Because F1 is
greater thanF2, nowX1 forms a new lower bound, andwe have a new
set of bounds X1 and XU. We can now select an additional point X3

for which we evaluate F3. It is clear that F3 is greater thanF2, and so
X3 replacesXU as the new upper bound. Repeating this process, we
can narrow the bounds to whatever tolerance is desired.

To determine the method for choosing the interior points
X1; X2; X3; . . ., we pick the values of X1 and X2 to be symmetric
about the center of the interval and satisfying the following
expressions:

X U � X2 � X1 � XL (13)

X1 � XL
XU � XL

� X2 � X1

XU � X1

(14)

Let � be a number between 0 and 1. We can define the interior point
X1 and X2 to be

X 1 � �1 � ��XL � �XU (15a)

X 2 � �XL � �1 � ��XU (15b)

Substituting Eqs. (15a) and (15b) into Eq. (14), we obtain

�2 � 3� � 1� 0 (16)

Solving the preceding equation, we obtain � � 0:38197. The ratio
�1 � ��=� � 1:61803 is the famous “golden section” number. For a
problem involving the estimation of the maximum of a one-variable
function F, we need only minimize the negative of the function, that
is, minimize -F.

Fig. 1 Material, element, and structure coordinates of rotating fiber-

composite laminated plate.

Fig. 2 The golden section method.
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V. Numerical Analysis

This section discusses the numerical analysis performed during
this study.

A. Accuracy of Shell Elements

Before the numerical analysis, the accuracy of the eight-node shell
element has been verified by analyzing a simply supported isotropic
rectangular plate subjected to in-plane compressive force N �
260:7 N=m (Fig. 3a). The thickness of the plate is 1mm, the length of
the plate is 20 cm, and the width is 10 cm. The Young’s modulus,
Poisson’s ratio, and density of the plate are E� 206 GPa, �� 0:3,
and �� 20:29 kg=m3. The numerical solution obtained by
ABAQUS employing 16 eight-node shell elements (4 � 4 mesh) is
!� 1922 s�1, which is the same as the analytical solution (Hu [24]).
Figure 3b shows the geometry of a cantilevered composite square
plate. The length of the plate is 76 cm and the thickness of each
lamina is 0.125 mm. The lamina consists of graphite/epoxy, and
material constitutive properties are taken from Crawley [25], which
are E11 � 128 GPa, E22 � 11 GPa, G23 � 1:53 GPa, G12 �G13�
4:48 GPa, �12 � 0:25, and �� 1500 kg=m3. There are three types
of laminate layups for the composite plate, which are �0=	 45=90�s,
�0=	 30�s, and �	45=
 45�s. The frequencies of the composite
plates calculated by ABAQUS are compared with the results from
Crawley [25] in Table 1, and good agreements are obtained.
Therefore, it is confirmed that the accuracy of the shell element in
ABAQUS is good enough to analyze the vibration behavior of a
composite plate.

B. Rectangular Laminated Plates with Various Boundary

Conditions, Aspect Ratios, and Axial Compressive Forces

In this section, rectangular laminated plates subjected to axial
compressive force N are considered (Fig. 4a). Two types of end
conditions are considered, which are four ends simply supported
(denoted by an S, as shown in Fig. 4b) and four ends fixed (denoted

by anF, as shown inFig. 4c). These boundary conditions prevent out-
of-plane displacementw but allow in-plane movements u and v. The
width b of the plate is equal to 10 cm and the length a of the plate
varies from 5 cm to 20 cm. The laminate layup of the plate is
�	�=90=0�2s and the thickness of each ply is 0.125 mm. To study the
influence of axial compressive force on the results of optimization
N � 0, 0:2Ncr, 0:4Ncr, 0:6Ncr, and 0:8Ncr are selected for analysis,
where Ncr is the linearized critical buckling of the laminated plate.
The material constitutive properties are again taken from Crawley
[25]. In the analysis, no symmetry simplifications are made for those
plates.

To find the optimal fiber angle � and the associated optimal
fundamental frequency !, we can express the optimization problem
as

Maximize: !��� (17a)

Subjected to: 0 � � � 90 deg (17b)

Before the golden section method is carried out, the fundamental
frequency ! of the rectangular laminated plate is calculated by
employing the ABAQUS finite element program for every 10 deg
increment in the � angle to locate themaximum point approximately.
Then proper upper and lower bounds are selected, and the golden
section method is performed. The optimization process is terminated
when an absolute tolerance (the difference of the two intermediate
points between the upper bound and the lower bound)�� � 0:5 deg
is reached.

Figure 5 shows the optimalfiber angle � and the associated optimal
fundamental frequency! vs the a=b ratio for �	�=90=0�2s laminated
plates with simply supported boundary conditions. From Fig. 5a we
can see that the axial compressive forceN has no influences at all on
the optimal fiber angle � of the laminated plates when the aspect ratio
of the plate is small (say a=b < 0:9). However, when the aspect ratio
of the plate is large (say a=b > 0:9), the axial compressive forces do
have significant influences on the optimalfiber angle of the laminated
plates. Generally, the optimalfiber angles all change from0 to 90 deg
when the aspect ratio of the plate is increased. In addition, the larger
the axial compressive force is applied, the faster the optimal fiber
angle shifts to 90 deg. Figure 5b shows that when the aspect ratio is
small (say a=b < 1) the optimal fundamental frequency decreases
with the increasing of the a=b ratio. When the aspect ratio is large
(say a=b > 1), the optimal fundamental frequency tends to approach
constant value. Generally, the axial compressive has significant
inflections on the optimal fundamental frequency of the laminated
plates. Under the same a=b ratio, the optimal fundamental frequency
decreases with the increasing of the compressive force.

Figure 6 shows the optimalfiber angle � and the associated optimal
fundamental frequency! vs the a=b ratio for �	�=90=0�2s laminated
plates with fixed boundary conditions. Again, the optimal fiber
angles all change from0 to 90 degwhen the aspect ratio of the plate is
increased. The larger the axial compressive force is applied, the faster
the optimal fiber angle shifts to 90 deg. Comparing Fig. 6a with
Fig. 5a, we can see that the optimalfiber angle of afixed plate shifts to
90 deg faster than that of a simply supported plate when the aspect
ratio is increased. Comparing Fig. 6b with Fig. 5b, we can see that
under the same aspect ratio and the same level of axial force, the
optimal fundamental frequencies of the laminated plates with fixed
edges are about twice of those with simply supported edges.
Therefore, it can be concluded that the boundary condition has
significant influence on the optimal fiber angle and the optimal
fundamental frequency of the laminated plate.

C. Rectangular Laminated Plates Containing Central Circular

Cutouts with Various Boundary Conditions, Aspect Ratios, and Axial

Compressive Forces

In this section, rectangular laminated plates subjected to axial
compressive force and similar to those in previous section are
analyzed except that the plates contain central circular cutouts with a
diameter of d� 4 cm as shown in Fig. 4a. The laminate layup of the

Fig. 3 Verification of the accuracy of a shell element.

Table 1 Verification of the numerical results

Laminate layup Modes Frequency, Hz
ABAQUS Crawley [25]

�0=	 45=90�s 1st mode 36.0 35.7
2nd mode 67.4 67.1
3rd mode 161.4 161.1

�0=	 30�s 1st mode 42.1 41.7
2nd mode 58.3 57.9
3rd mode 121.8 121.2

�	45=
 45�s 1st mode 22.2 22.1
2nd mode 79.4 79.5
3rd mode 127.2 128.1
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plate is still �	�=90=0�2s and two types of boundary conditions, that
is, simply supported and fixed, are considered.

Figure 7 shows the optimalfiber angle � and the associated optimal
fundamental frequency! vs the a=b ratio for �	�=90=0�2s laminated

Fig. 4 Geometry and boundary conditions of composite plates.
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Fig. 5 Effect of a=b ratio and in-plane compressive force N on optimal
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���=90=0�2s laminated rectangular plates (b� 10 cm).
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plates with a central circular cutout and with simply supported
boundary conditions. From Fig. 7a we can see that the axial
compressive force N has very little influence on the optimal fiber
angle � of the laminated plates when the aspect ratio of the plate is
small (say a=b < 1:3). However, when the aspect ratio of the plate is
large (say a=b > 1:3), the axial compressive forces do have
significant influences on the optimal fiber angle of the laminated
plates. Generally, the optimal fiber angles change from 27 to 78 deg
when the aspect ratio of the plate is increased. In addition, the larger
the axial compressive force applied, the faster the optimal fiber angle
changes to 78 deg. Figure 7b shows that the optimal fundamental
frequency ! decreases with the increasing of a=b ratio when the
aspect ratio is small (say a=b < 1:5). When the aspect ratio is large
(say a=b > 1:5), the optimal fundamental frequency tends to
approach a constant value. Again, the axial compressive has
significant inflections on the optimal fundamental frequency of the
laminated plates with a central circular cutout. Under the same a=b
ratio, the optimal fundamental frequency decreases with the
increasing of compressive force. Comparing Fig. 7a with Fig. 5a, we
can observe that the central circular cutout has significant influence
on the optimal fiber angle of the laminate plates with simply
supported ends. Comparing Fig. 7b with Fig. 5b, we can see that the
central circular cutout has very little influence on the optimal
fundamental frequency of the laminate plates with simply supported
ends.

Figure 8 shows the optimalfiber angle � and the associated optimal
fundamental frequency! vs the a=b ratio for �	�=90=0�2s laminated
plates with a central circular cutout and with fixed boundary
conditions. From Fig. 8a we can see that the optimal fiber angles
usually change from 0 to 90 deg when the aspect ratio of the plate is
increased. The larger the axial compressive force applied, the faster
the optimal fiber angle shifts to 90 deg. The only exception is the
laminated plate subjected to a compressive axial compressive force
N � 0:8Ncr. Its optimal fiber angle deviates from 90 deg when the
aspect ratio is large. From Fig. 8b we can observe that the axial

compressive has significant inflections on the optimal fundamental
frequency of the laminated plates with a central circular cutout.
Under the same a=b ratio, the optimal fundamental frequency
decreases with the increasing of compressive force.

Comparing Fig. 8a with Fig. 6a, we can observe that the central
circular cutout has significant influence on the optimal fiber angle of
the laminate plates with fixed ends only when the axial compressive
force N is large (say N > 0:6Ncr ). Comparing Fig. 8b with Fig. 6b,
we can see that the central circular cutout has very little influence on
the optimal fundamental frequency of the laminate plates with fixed
ends. Finally, comparing Fig. 8 with Fig. 7, we can conclude that the
boundary condition has a significant influence on the optimal fiber
angle and the optimal fundamental frequency of the laminated plate
with a central circular cutout.

D. Square Laminated Plates with Various Boundary Conditions,

Central Circular Cutouts, and Axial Compressive Forces

In this section, square laminated plates subjected to axial
compressive force (N � 0, 0:2Ncr, 0:4Ncr, 0:6Ncr, 0:8Ncr) and
contained a central circular cutout are analyzed. The laminate layup
of the plate is still �	�=90=0�2s and two types of boundary
conditions, that is, simply supported and fixed, are considered. The
length of the plate is a� b� 10 cm and the diameter d of the cutout
varies from 0 cm to 6 cm.

Figure 9 shows the optimalfiber angle � and the associated optimal
fundamental frequency! vs the d=b ratio for �	�=90=0�2s laminated
plates with simply supported boundary conditions. From Fig. 9a we
can see that the axial compressive force N has no influence at all on
the optimal fiber angle � of the laminated plates when the diameter of
the cutout is large (say d=b > 0:4). However, when the diameter of
the cutout is small (say d=b < 0:4), the axial compressive forces do
have some influence on the optimal fiber angle of the laminated
plates. Generally, the optimal fiber angle varies between 40 and
50 deg. In practice, the optimal value �� 45 deg may be suggested
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for square laminated plates with or without a central circular cutout.
Figure 9b shows that the optimal fundamental frequency! decreases
with the increase in axial compressive forceN. However, the optimal
fundamental frequency! tends to increase with the increasing of the
cutout size especially when the axial compressive force N is lower.
This phenomenon that the fundamental frequencies increase with the
increasing of the cutout size might seem strange. However, previous
research did show that introducing a hole into a composite structure
does not always reduce the fundamental natural frequency and, in
some instances, may increase its fundamental natural frequency (Hu
and Ho [13], Hu and Juang [14], Hu and Ou [15], Hu and Tsai [16],
Lee et al. [26], Ramakrishna et al. [27]). This is because that the
fundamental natural frequency of an ordinary composite structure is
not only influenced by cutout but also influenced by material
orthotropy, boundary condition, structural geometry, and their
interactions.

Figure 10 shows the optimal fiber angle � and the associated
optimal fundamental frequency ! vs the d=b ratio for �	�=90=0�2s
laminated plates with fixed boundary conditions. From Fig. 10a we
can see that for a laminated plate with small cutout size (say
d=b < 0:3), the optimal fiber angle is close to 0 deg when there is no
axial compressive force. However, when axial compressive force
exists, the optimal fiber angle is close to 90 deg. For a laminated plate
with a large cutout size (say d=b� 0:6), the optimal fiber angle is
close to 45 deg whether the axial compressive force exists or not.
Figure 10b again shows that the optimal fundamental frequency !
increases with the decreasing of axial compressive force andwith the
increasing of the cutout size. Comparing Fig. 10 with Fig. 9, we can
also see that the boundary condition has significant influence on the
optimal fiber angle and the optimal fundamental frequency of the
square laminated plate with a central circular cutout.

VI. Conclusions

Based on the numerical results of this investigation, the following
conclusions may be drawn:

1. The boundary conditions have significantly influenced the opti-
mal fundamental frequency and the associated optimal fiber
orientation of the laminated plates with or without cutouts and are
subjected to axial compressive forces.

2. Generally, the axial compressive force has a significant influ-
ence on the optimal fundamental frequency of the laminated plates
with or without cutouts. Under the same a=b ratio, the optimal
fundamental frequency decreases with the increasing of the
compressive force.

3. For rectangular laminated plates subjected to axial compressive
forces and with small aspect ratio, the axial compressive forceN has
very little influence on the optimal fiber angle � of the laminated
plates and the optimal fundamental frequency ! decreases with the
increasing of the a=b ratio. However, when the aspect ratio of the
plate is large, the axial compressive forces do have a significant
influence on the optimal fiber angle of the laminated plates, and the
optimal fundamental frequency tends to approach a constant value.

4. The central circular cutout has significant influence on the
optimal fiber angle of the rectangular laminate plates with simply
supported ends. In addition, it has significant influence on the
optimal fiber angle of the laminate plates with fixed ends only when
the axial compressive force is large.

5. The central circular cutout has very little influence on the opti-
mal fundamental frequency of the rectangular laminate plates with
simply supported ends or with fixed ends.

6. The axial compressive force has no influence at all on the
optimal fiber angle of the square laminated plates when the diameter
of the cutout is large. However, when the diameter of the cutout is
small, the axial compressive force does have some influences on the
optimal fiber angle of the laminated plates.

7. For square laminated plates subjected to compressive force, the
optimal fundamental frequency tends to increase with the increasing
of the cutout size especially when the axial compressive force N is
lower.

References

[1] Noor, A. K., and Burton, W. S., “Three-Dimensional Solutions for the
Free Vibrations and Buckling of Thermally Stressed Multilayered
Angle-Ply Composite Plates,” Journal of Applied Mechanics, Vol. 59,
No. 4, 1992, pp. 868–877.
doi:10.1115/1.2894055

[2] Tenek, L. T., “Vibration of Thermally Stressed Composite Plates with
and Without Cutouts,” AIAA Journal, Vol. 38, No. 7, 2000, pp. 1300–
1301.

[3] Chen, C.-S., Cheng, W.-S., Chien, R.-D., and Doong, J.-L., “Large
Amplitude Vibration of an Initially Stressed Cross Ply Laminated
Plates,” Applied Acoustics, Vol. 63, No. 9, 2002, pp. 939–956.
doi:10.1016/S0003-682X(02)00015-4

[4] Chakrabarti, A., Topdar, P., and Sheikh, A. H., “Vibration of Pre-
Stressed Laminated Sandwich Plates with Interlaminar Imperfections,”
Journal of Vibration and Acoustics, Vol. 128, No. 6, 2006, pp. 673–
681.

[5] Dhanaraj, R., and Palanininathan, “Free Vibration of Initially Stressed
Composite Laminates,” Journal of Sound and Vibration, Vol. 142,
No. 3, 1990, pp. 365–378.
doi:10.1016/0022-460X(90)90656-K

[6] Sundaresan, P., Singh, G., and Rao, G. V., “A Simple Approach to
Investigate Vibratory Behaviour of Thermally Stressed Laminated
Structures,” Journal of Sound and Vibration, Vol. 219, No. 4, 1999,
pp. 603–618.
doi:10.1006/jsvi.1998.1856

[7] Nayak, A. K., Moy, S. S. J., and Shenoi, R. A., “AHigher Order Finite
Element Theory for Buckling and Vibration Analysis of Initially
StressedComposite Sandwich Plates,” Journal of Sound andVibration,
Vol. 286, Nos. 4–5, 2005, pp. 763–780.
doi:10.1016/j.jsv.2004.10.055

[8] Bert, C. W., “Literature Review—Research on Dynamic Behavior of
Composite and Sandwich Plates—V: Part II,” The Shock and Vibration
Digest, Vol. 23, No. 7, 1991, pp. 9–21.
doi:10.1177/058310249102300704

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6

N=0
N=0.2Ncr
N=0.4Ncr
N=0.6Ncr
N=0.8Ncr

O
pt

im
al

 θ
 (d

eg
re

es
)

d/b

a) Optimal fiber angle θ vs d/b ratio

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 0.1 0.2 0.3 0.4 0.5 0.6

N=0
N=0.2Ncr
N=0.4Ncr
N=0.6Ncr
N=0.8Ncr

O
pt

im
al

 ω
 (k

H
z)

d/b

b) Optimal fundamental frequency ω vs d/b ratio
Fig. 10 Effect of cutout size and in-plane compressive force N on
optimal fiber angle and optimal fundamental frequency of fixed

���=90=0�2s laminated square plates with a central circular cutout

(a� b� 10 cm).

HU AND TSAI 921

http://dx.doi.org/10.1115/1.2894055
http://dx.doi.org/10.1016/S0003-682X(02)00015-4
http://dx.doi.org/10.1016/0022-460X(90)90656-K
http://dx.doi.org/10.1006/jsvi.1998.1856
http://dx.doi.org/10.1016/j.jsv.2004.10.055
http://dx.doi.org/10.1177/058310249102300704


[9] Abrate, S., “Optimal Design of Laminated Plates and Shells,”
Composite Structures, Vol. 29, No. 3, 1994, pp. 269–286.
doi:10.1016/0263-8223(94)90024-8

[10] Raouf, R. A., “Tailoring the Dynamic Characteristics of Composite
Panels Using Fiber Orientation,”Composite Structures, Vol. 29, No. 3,
1994, pp. 259–267.
doi:10.1016/0263-8223(94)90023-X

[11] Topal, U., and Uzman, U., “Optimal Design of Laminated Composite
Plates to Maximise Fundamental Frequency Using MFD Method,”
Structural Engineering and Mechanics, Vol. 24, No. 4, 2006, pp. 479–
491.

[12] Schmit, L. A., “Structural Synthesis—Its Genesis and Development,”
AIAA Journal, Vol. 19, No. 10, 1981, pp. 1249–1263.

[13] Hu, H.-T., and Ho, M.-H., “Influence of Geometry and End Conditions
on Optimal Fundamental Natural Frequencies of Symmetrically
Laminated Plates,” Journal of Reinforced Plastics and Composites,
Vol. 15, No. 9, 1996, pp. 877–893.

[14] Hu, H.-T., and Juang, C.-D., “Maximization of the Fundamental
Frequencies of Laminated Curved Panels Against Fiber Orientation,”
Journal of Aircraft, Vol. 34, No. 6, 1997, pp. 792–801.

[15] Hu, H.-T., and Ou, S.-C., “Maximization of the Fundamental
Frequencies of Laminated Truncated Conical Shells with Respect to
Fiber Orientations,” Composite Structures, Vol. 52, Nos. 3–4, 2001,
pp. 265–275.
doi:10.1016/S0263-8223(01)00019-8

[16] Hu, H.-T., and Tsai, J.-Y., “Maximization of the Fundamental
Frequencies of Laminated Cylindrical Shells with Respect to Fiber
Orientations,” Journal of Sound and Vibration, Vol. 225, No. 4, 1999,
pp. 723–740.
doi:10.1006/jsvi.1999.2261

[17] Narita, Y., “Layerwise Optimization for the Maximum Fundamental
Frequency of Laminated Composite Plates,” Journal of Sound and

Vibration, Vol. 263, No. 5, 2003, pp. 1005–1016.
doi:10.1016/S0022-460X(03)00270-0

[18] Hu, H.-T., and Wang, K.-L., “Vibration Analysis of Rotating
Laminated Cylindrical Shells,” AIAA Journal, Vol. 45, No. 8, 2007,
pp. 2051–2061.

[19] Vanderplaats, G. N., Numerical Optimization Techniques for

Engineering Design with Applications, McGraw–Hill, New York,
1984, Chap. 2.

[20] Haftka, R. T., Gürdal, Z., and Kamat, M. P., Elements of Structural
Optimization, 2nd ed., KluwerAcademic, Norwell,MA, 1990, Chap. 4.

[21] ABAQUS, Inc., ABAQUS Analysis User’s Manual and Example

Problems Manual, Version 6.8, Providence, RI, 2008.
[22] Whitney, J. M., “Shear Correction Factors for Orthotropic Laminates

Under Static Load,” Journal of Applied Mechanics, Vol. 40, No. 1,
1973, 302–304.

[23] Cook, R. D.,Malkus, D. S., Plesha,M. E., andWitt, R. J.,Concepts and
Applications of Finite Element Analysis, 4th ed., Wiley, Hoboken, NJ,
2002.

[24] Hu, H.-T., Theory of Plates, Class Notes, Department of Civil
Engineering, National Cheng Kung Univ., Taiwan, People’s Republic
of China, 2008.

[25] Crawley, E. F., “The Natural Modes of Graphite/Epoxy Cantilever
Plates and Shells,” Journal of Composite Materials, Vol. 13, No. 3,
1979, pp. 195–205.
doi:10.1177/002199837901300302

[26] Lee, H. P., Lim, S. P., and Chow, S. T., “Free Vibration of Composite
Rectangular Plates with Rectangular Cutouts,” Composite Structures,
Vol. 8, 1987, pp. 63–81.
doi:10.1016/0263-8223(87)90016-X

[27] Ramakrishna, S., Rao, S. K. M., and Rao, N. S., “Free Vibration
Analysis of Laminates with Circular Cutout by Hybrid-Stress Finite
Element,” Composite Structures, Vol. 21, 1992, pp. 177–185.
doi:10.1016/0263-8223(92)90017-7

R. Ohayon
Associate Editor

922 HU AND TSAI

http://dx.doi.org/10.1016/0263-8223(94)90024-8
http://dx.doi.org/10.1016/0263-8223(94)90023-X
http://dx.doi.org/10.1016/S0263-8223(01)00019-8
http://dx.doi.org/10.1006/jsvi.1999.2261
http://dx.doi.org/10.1016/S0022-460X(03)00270-0
http://dx.doi.org/10.1177/002199837901300302
http://dx.doi.org/10.1016/0263-8223(87)90016-X
http://dx.doi.org/10.1016/0263-8223(92)90017-7

