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Abstract

The buckling resistance of fiber-reinforced laminated cylindrical panels with a given material system and subjected to uniaxial com-
pressive force is maximized with respect to fiber orientations by using a sequential linear programming method together with a simple
move-limit strategy. The significant influences of panel thicknesses, curvatures, aspect ratios, cutouts and end conditions on the optimal
fiber orientations and the associated optimal buckling loads of laminated cylindrical panels have been shown through this investigation.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of fiber-reinforced laminated cylindrical panels in
aerospace and mechanical industries has increased rapidly in
recent years. The composite cylindrical panels in service are
commonly subjected to various kinds of compressive loads
which may cause buckling. Hence, structural instability
becomes a major concern in safe and reliable design of the
composite cylindrical panels. The buckling resistance of lam-
inated cylindrical panels depends on end conditions, lamina-
tion parameters such as ply orientations [1–6], and geometric
variables such as thicknesses, curvatures, aspect ratios and
cutouts [3,5–10]. Therefore, for composite cylindrical panels
with a given material system, geometric shape and end con-
dition, the proper selection of appropriate lamination to
realize the maximum buckling resistance of the cylindrical
panels becomes a crucial problem.

Research on the subject of structural optimization has
been reported by many investigators [11]. Among various
optimization schemes, the method of sequential linear pro-
gramming has been successfully applied to many large scale
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structural problems [12,13]. Hence, linearization of nonlin-
ear optimization problems to meet requirements for itera-
tive applications of a linear programming method is one
of the most popular approaches to solve the structural opti-
mization problem.

In this investigation, buckling optimization of symmetri-
cally laminated cylindrical panels with respect to fiber ori-
entations is performed by using a sequential linear
programming method together with a simple move-limit
strategy. The critical buckling loads of composite cylindri-
cal panels are calculated by the bifurcation buckling anal-
ysis implemented in the ABAQUS finite element program
[14]. In this paper, the bifurcation buckling analysis, the
constitutive equations for fiber-composite laminate and
the optimization method are briefly reviewed first. Then
the influence of end conditions, curvatures, aspect ratios,
thicknesses and cutouts on the optimal fiber orientations
and the associated optimal buckling loads of composite
cylindrical panel is presented. Finally, important conclu-
sions obtained from this study are given.

2. Bifurcation buckling analysis

In the finite-element analysis, a system of nonlinear alge-
braic equations results in the incremental form:
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Fig. 1. Material, element and structure coordinates of laminated cylin-
drical panels.
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½K t�dfug ¼ dfpg; ð1Þ
where [Kt] is the tangent stiffness matrix, d{u} the incre-
mental nodal displacement vector and d{p} the incremental
nodal force vector.

Within the range of elastic behavior, it is known that
when the deformation of a structure is small, the nonlinear
theory leads to the same critical load as the linear theory
[15,16]. Consequently, if only the buckling load is to be
determined, the calculation can be greatly simplified by
assuming the deformation to be small and we can neglect
the nonlinear terms which are functions of nodal displace-
ments in the tangent stiffness matrix. The linearized formu-
lation then gives rise to a tangent stiffness matrix in the
following expression [17]:

½K t� ¼ ½KL� þ ½Kr�; ð2Þ
where [KL] is a linear stiffness matrix and [Kr] a stress stiff-
ness matrix. If a stress stiffness matrix [Kr]ref is generated
according to a reference load {p}ref, for another load level
{p} with k a scalar multiplier, we have

fpg ¼ kfpgref ; ½Kr� ¼ k½Kr�ref : ð3Þ
When buckling occurs, the external loads do not change,

i.e., d{p} = 0. Then the bifurcation solution for the linear-
ized buckling problem may be determined from the follow-
ing eigenvalue equation:

ð½KL� þ kcr½Kr�refÞdfug ¼ f0g; ð4Þ
where kcr is an eigenvalue and d{u} becomes the eigenvec-
tor defining the buckling mode. The critical load {p}cr can
be obtained from {p}cr = kcr{p}ref. In ABAQUS, a sub-
space iteration procedure [18] is used to solve for the eigen-
values and eigenvectors.
3. Constitutive matrix for fiber-composite laminae

In finite element analysis, the laminated cylindrical pan-
els are modeled by eight-node isoparametric laminate shell
elements with six degrees of freedom per node (three dis-
placements and three rotations). The formulation of the
shell allows transverse shear deformation and this shear
flexible shell can be used for both thick and thin shell appli-
cations [14].

During the analysis, the constitutive matrices of
composite materials at element integration points must be
calculated before the stiffness matrices are assembled from
element level to global level. For fiber-composite laminate
materials, each lamina can be considered as an orthotropic
layer. The stress–strain relations for a lamina in the mate-
rial coordinate (1,2,3) (Fig. 1) at an element integration
point can be written as

fr0g ¼ ½Q01�fe0g; ½Q01� ¼

E11

1�m12m21

m12E22
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0 0 G12
fs0g ¼ ½Q02�fc0g; ½Q02� ¼
a1G13 0

0 a2G23

� �
; ð6Þ

where {r 0} = {r1,r2,s12}T, {s 0} = {s13,s23}T, {e 0} =
{e1, e2,c12}T, {c 0} = {c13,c23}T. It should be noted that the
reciprocal relation m21E11 = m12E22 is held in Eq. (5). The
a1 and a2 in Eq. (6) are shear correction factors. In ABA-
QUS, the shear correction factors are calculated by assum-
ing that the transverse shear energy through the thickness
of laminate is equal to that of the case of unidirectional
bending [14,19].

The constitutive equations for the lamina in the element
coordinate (x,y,z) then become

frg ¼ ½Q1�feg; ½Q1� ¼ ½T 1�T½Q01�½T 1�; ð7Þ

fsg ¼ ½Q2�fcg; ½Q2� ¼ ½T 2�T½Q02�½T 2�; ð8Þ

½T 1� ¼
cos2 h sin2 h sin h cos h

sin2 h cos2 h � sin h cos h

�2 sin h cos h 2 sin h cos h cos2 h� sin2 h

2
64

3
75;

ð9Þ

½T 2� ¼
cos h sin h

� sin h cos h

� �
; ð10Þ

where {r} = {rx,ry, sxy}
T, {s} = {sxz,syz}

T, {e} = {ex,ey,cxy}
T,

{c} = {cxz,cyz}
T, and fiber orientation h is measured coun-

terclockwise from the element local x-axis to the material
1-axis.

Let {e0} = {ex0, ey0,cxy0}T be the in-plane strains at the
mid-surface of the laminate section, {j} = {jx,jy,jxy}T

the curvatures, and h the total thickness of the section. If
there are n layers in the layup, the stress resultants,
{N} = {Nx,Ny,Nxy}T, {M} = {Mx,My,Mxy}T and {V} =
{Vx,Vy}T, can be defined as
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where zjt and zjb are the distance from the mid-surface
of the section to the top and the bottom of the jth
layer, respectively. The [0] is a 3 by 2 matrix with all the
coefficients equal to zero. It should be noted that in sym-
metrically laminated composite structures the coupling–
stretching stiffness identically vanishes. As a result, the
bending and stretching become decoupled in the constitu-
tive equations, i.e.

Xn

j¼1

1

2
ðz2

jt � z2
jbÞ½Q1� ¼

0 0 0

0 0 0

0 0 0

2
64

3
75: ð12Þ
Fig. 2. Laminated cylindrical panel with central circular cutout.

Fig. 3. Critical buckling mode of laminated cylindrical panel with central
circular cutout.
4. Sequential linear programming

A general optimization problem may be defined as the
following:

Minimize : f ðxÞ ð13aÞ
Subjected to : giðxÞ 6 0; i ¼ 1; . . . ; r; ð13bÞ

hjðxÞ ¼ 0; j ¼ r þ 1; . . . ;m; ð13cÞ
pk 6 xk 6 qk; k ¼ 1; . . . ; n; ð13dÞ

where x = {x1,x2, . . . ,xn}T is a vector of design variables,
f(x) is an objective function, gi(x) are inequality con-
straints, and hj(x) are equality constraints. The pk and qk

are lower and upper limits of the variable xk. If an optimi-
zation problem requires maximization, we simply minimize
�f(x).

For the optimization problem of Eqs. (13a)–(13d), a lin-
earized problem may be constructed by approximating the
nonlinear functions at a current solution point,
x0 = {x01,x02, . . . ,x0n}T, in a first-order Taylor series
expansion as follows:

Minimize : f ðxÞ � f ðx0Þ þ rf ðx0ÞTdx ð14aÞ
Subjected to : giðxÞ � giðx0Þ þ rgiðx0ÞTdx 6 0;

i ¼ 1; . . . ; r; ð14bÞ
hjðxÞ � hjðx0Þ þ rhjðx0ÞTdx ¼ 0;

j ¼ r þ 1; . . . ;m; ð14cÞ
pk 6 xk 6 qk; k ¼ 1; . . . ; n; ð14dÞ

where dx = {x1 � x01,x2 � x02, . . . ,xn � x0n}T. It is clear
that Eqs. (14a)–(14d) represent a linear programming
problem where variables are contained in the vector dx.
A solution for Eqs. (14a)–(14d) may be easily obtained
by the simplex method [20]. After obtaining a solution of
Eqs. (14a)–(14d), say x1, we can linearize the original prob-
lem, Eqs. (13a)–(13d), at x1 and solve the new linear pro-
gramming problem. The process is repeated until a
precise solution is achieved. This approach is referred to
as sequential linear programming [12,13].

Although the procedure for a sequential linear program-
ming is simple, difficulties may arise during the iterations.
First, the optimum solution for the approximate linear
problem may violate the constraint conditions of the origi-
nal optimization problem. Second, in a nonlinear problem,
the true optimum solution may appear between two con-
straint intersections. A straightforward successive lineari-
zation may lead to an oscillation of the solution between
the widely separated values. Difficulties in dealing with
such a problem may be avoided by imposing a ‘‘move
limit’’ on the linear approximation [12,13]. The concept
of a move limit is that a set of box-like admissible con-
straints are placed in the range of dx and it should gradu-
ally approach zero as the iterative process continues. It is
known that computational economy and accuracy of the
approximate solution may depend greatly on the choice
of the move limit. In general, the choice of a suitable move



Fig. 4. Laminated cylindrical panels with various end conditions: (a) SSSS panel; (b) SFSF panel; (c) FSFS panel; (d) FFFF panel.
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Fig. 5. Effect of end conditions and curvatures on optimal fiber angle and
optimal buckling load of thin ([±h/90/0]s) laminated cylindrical panels
(a/b = 1): (a) circular angle / vs. optimal fiber angle h; (b) circular angle /
vs. optimal buckling load Nxcr.
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Fig. 6. Effect of end conditions and curvatures on optimal fiber angle and
optimal buckling load of thick ([±h/90/0]4s) laminated cylindrical panels
(a/b = 1): (a) circular angle / vs. optimal fiber angle h; (b) circular angle /
vs. optimal buckling load Nxcr.
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limit depends on experience and also on the results of pre-
vious steps.

The algorithm of the sequential linear programming
with selected move limits may be summarized as follows:

(1) Linearize the nonlinear objective function and associ-
ated constraints with respect to an initial guess x0.

(2) Impose move limits in the form of �S 6 (x � x0)
6 R, where S and R are properly chosen lower and
upper bounds.

(3) Solve the approximate linear programming problem
to obtain an optimum solution x1.

(4) Repeat the procedures from (1) to (3) by redefining x1

with x0 until either the subsequent solutions do not
change significantly (i.e., true convergence) or the
move limit approaches zero (i.e., forced convergence).
If the solution obtained is due to forced convergence,
the procedures from (1) to (4) should be repeated
with another initial guess.
Fig. 7. Typical buckling modes of FFFF laminated cylindrical panels
5. Comparison with existing study

The accuracy of the ABAQUS program to predict the
buckling load of laminated cylindrical panel is examined
in this section by comparing with the experiment data of
Knight and Starnes [21] and with the numerical result of
Stanley [22]. The dimensions of the tested laminated cylin-
drical panel are given in Fig. 2. The length of the straight
edge a is equal to 35.56 cm, the length of the curved edge
b is equal to 36.99 cm and the circular angle / is equal to
55.63�. The panel contains a central circular cutout with
diameter d being equal to 5.08 cm. The x, y, z are the axial
direction, the hoop direction, and the normal direction of
the panels, respectively. The laminated cylindrical panels
are subjected to the axial compressive force applied at the
curved edges normal to the x direction. The laminate layup
of the panel is [±45/90/02/90/�45]2 and the thickness of
each ply is 0.142 mm. The material constitutive properties
as defined by Stanley [22] are E11 = 135 GPa, E22 = 13
with [±h/90/0]ns layup and under optimal fiber angles (a/b = 1).
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GPa, m12 = 0.38, G12 = G13 = 6.4 GPa, G23 = 4.3 GPa. The
panel is fixed on the left curved edge, fixed except for axial
motion on the right curved edge, and simply supported
along the two straight edges.

The critical buckling load of the laminated cylindrical
panel obtained from the experimental data of Knight and
Starnes [21] is 118.7 kN. The critical buckling load of the
panel calculated by ABAQUS program and Stanley [22]
are 112.9 kN (with 4.9% error) and 107.0 kN (with 9.9%
error), respectively. The critical buckling mode obtained
by ABAQUS is shown in Fig. 3, which agrees well with
that reported by Stanely [22]. As the result, the composite
shell elements in ABAQUS program are proved to be able
to predict the critical buckling load of laminated cylindrical
panel with reasonable accuracy.

6. Results of the optimization analysis

6.1. Laminated cylindrical panels with various curvatures and

end conditions

In this section composite laminated cylindrical panels
with four types of end conditions (Fig. 4) are considered,
which are four edges simply supported (denoted by SSSS),
two curved edges simply supported and two straight edges
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Fig. 8. Effect of end conditions and aspect ratios on optimal fiber angle
and optimal buckling load of thin ([±h/90/0]s) laminated cylindrical panels
(/ = 60�): (a) aspect ratio a/b vs. optimal fiber angle h; (b) aspect ratio a/b

vs. optimal buckling load Nxcr.
fixed (denoted by SFSF), two curved edges fixed and two
straight edges simply supported (denoted by FSFS), and
four edges fixed (denoted by FFFF). The laminated cylin-
drical panels are subjected to the axial compressive load Nx

(force per unit length) applied at the edges normal to the x
direction. The lengths of the straight edge, a, and the
curved edge, b, are both equal to 10 cm and the circular
angle / varies between 15� and 90�. The laminate layups
of the panels are [±h/90/0]ns and the thickness of each
ply is 0.125 mm. In order to study the influence of panel
thickness on the results of optimization, n = 1 (8-plies thin
panel) and 4 (32-plies thick panel) are selected for analysis.
The lamina is consisted of graphite/epoxy (Hercules AS/
3501-6) and material constitutive properties are taken from
Crawley [23], which are E11 = 128 GPa, E22 = 11 GPa,
m12 = 0.25, G12 = G13 = 4.48 GPa, G23 = 1.53 GPa.

In the finite element analysis, no symmetry simplifica-
tions are made for those panels. The boundary conditions
(Fig. 4) allow axial displacements u to take place in x direc-
tion. Prior to the optimization study, convergence study of
the finite element mesh has been performed for [±45/90/0]s
and [±45/90/0]4s laminated cylindrical panels with / = 60�
and with all four types of end conditions [24]. On the basis
of this study and previous experience [5], it is decided to use
64 elements (8 · 8 mesh) to model the panels having equal
12

16

20

24

28

0.5 1 1.5 2 2.5 3

SSSS
SFSF
FSFS
FFFF

O
pt

im
al

 θ
 (

de
gr

ee
s)

a/b

4.5

5.0

5.5

6.0

6.5

0.5 1 1.5 2 2.5 3

SSSS
SFSF
FSFS
FFFF

O
pt

im
al

 N
xc

r (
M

N
/m

)

a/b

Fig. 9. Effect of end conditions and aspect ratios on optimal fiber angle
and optimal buckling load of thick ([±h/90/0]4s) laminated cylindrical
panels (/ = 60�): (a) aspect ratio a/b vs. optimal fiber angle h; (b) aspect
ratio a/b vs. optimal buckling load Nxcr.
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lengths in straight and curved edges. For panels with large
aspect ratios or with cutouts, more elements are employed
to model the entire structures.

Based on the sequential linear programming method, in
each iteration the current linearized optimization problem
becomes:

Maximize : N xcrðhÞ � N xcrðh0Þ þ ðh� h0Þ
oNxcr

oh

����
h¼h0

ð15aÞ
Subjected to : 0� 6 h 6 90�; ð15bÞ

� r � q� 0:5s
6 ðh� h0Þ 6 r � q� 0:5s;

ð15cÞ

where Nxcr is the critical buckling load. The h0 is a solution
obtained in the previous iteration. The r and q in Eq. (15c)
are the size and the reduction rate of the move limit. In the
present study, the values of r and q are selected to be 20�
and 0.9(N�1), where N is a current iteration number. In or-
der to control the oscillation of the solution, a parameter
0.5s is introduced in the move limit, where s is the number
Fig. 10. Typical buckling modes of FFFF laminated cylindrical panel
of oscillations of the derivative oNxcr/oh that has taken
place before the current iteration. The value of s increases
by 1 if the sign of oNxcr/oh changes. Whenever oscillation
of the solution occurs, the range of the move limit is re-
duced to half of its current value. This expedites the solu-
tion convergent rate very rapidly.

The oNxcr/oh term in Eq. (15a) may be approximated by
using a forward finite-difference method with the following
form:

oNxcr

oh
� ½N xcrðh0 þ DhÞ � Nxcrðh0Þ

Dh
: ð16Þ

Hence, to determine the value of oNxcr/oh numerically, two
bifurcation buckling analyses to compute Nxcr(h0) and
Nxcr(h0 + Dh) are needed in each iteration. In this study,
the value of Dh is selected to be 1� in most iterations.

This optimization problem involves only one design var-
iable h. Though, there are other simple techniques, such as
polynomial interpolation and golden section method,
available for solving problems of one variable, the sequen-
s with [±h/90/0]ns layup and under optimal fiber angles (/ = 60�).
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tial linear programming method is still selected for the opti-
mization. This is because the method can be extended to
more variables (i.e., the angles of other plies) easily [13].

Fig. 5 shows the optimal fiber angle h and the associated
optimal buckling load Nxcr with respect to the circular
angle / for thin ([±h/90/0]s) laminated cylindrical panels.
From Fig. 5a, we can see that when / is less than 30�,
the end conditions have significant influence on optimal
fiber angles of the panels. However, when / is greater than
30�, the optimal fiber angles of these panels with different
end conditions seem to be very close. Fig. 5b shows that
the optimal buckling load Nxcr increases with the increase
of the circular angle /. Among these panels under the same
geometric configuration, the FFFF panels have the highest
optimal buckling loads, and the SSSS panels have the low-
est optimal buckling loads. In addition, the optimal buck-
ling loads of SFSF panels are very close to those of SSSS
panels, and the optimal buckling loads of FSFS panels
are very similar to those of FFFF panels. This indicates
the panels at this geometric configuration are governed
by the boundary conditions at the curved edges.

Fig. 6 shows the optimal fiber angle h and the associated
optimal buckling load Nxcr with respect to the circular
angle / for thick ([±h/90/0]4s) laminated cylindrical panels.
Fig. 4a shows that when / is less than 75�, the end condi-
tions have significant influence on optimal fiber angle h of
the panels. Comparing Fig. 6a with Fig. 5a, we can observe
that thickness has significant influence on the optimal fiber
angles of the cylindrical panels. From Fig. 6b we can
observe that the buckling strengths of these thick panels
are also governed by the boundary conditions at the curved
sides and the optimal buckling load increases with the
increase of the panel curvature as thin panels.

Fig. 7 shows the typical buckling modes for both thin
and thick ([±h/90/0]s and [±h/90/0]4s) panels with four
fixed ends and under an optimal fiber orientation. We find
that as panel curvatures increase, the buckling modes of
these panels have more waves in the axial direction. Similar
results are also obtained for panels with other end condi-
tions [24].

6.2. Laminated cylindrical panels with various aspect ratios

and end conditions

In this section, laminated cylindrical panels with various
aspect ratios a/b are analyzed. The length of the curved
edge, b, is equal to 10 cm and the length of the straight edge,
a, varies between 5 and 30 cm (Fig. 4). The circular angle, /,
of these panels is set to 60�. Four types of end conditions,
i.e., SSSS, SFSF, FSFS, and FFFF, described in a previous
section are considered. Again, the laminate layups, [±h/90/
0]s and [±h/90/0]4s, are selected for analysis.

Fig. 8 shows the optimal fiber angle h and the associ-
ated optimal buckling load Nxcr with respect to the aspect
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ratio a/b for thin ([±h/90/0]s) laminated cylindrical panels.
From Fig. 8a, we can see that the results of optimization
for these panels with different end conditions vary
between 29� and 32�. The results in Fig. 8b show that
as a/b increases, the optimal buckling loads of these pan-
els diminish to constant values. Generally, when the
aspect ratio is small (say a/b < 1), the results of optimiza-
tion for SFSF panels are similar to those of SSSS panels
and the results of optimization for FSFS panels are sim-
ilar to those of FFFF panels. However, when the aspect
ratio is large (say a/b > 2), the results of optimization
for SFSF panels are similar to those of FFFF panels
and the results of optimization for FSFS panels are sim-
ilar to those of SSSS panels. This indicates that the panels
are governed by the boundary conditions at the curved
edges for short panels and governed by the boundary con-
ditions at the straight edges for long panels.

Fig. 9 shows the optimal fiber angle h and the associated
optimal buckling load Nxcr with respect to the aspect ratio
Fig. 13. Typical buckling modes of FFFF laminated cylindrical panels with cen
(a/b = 1, / = 60�).
a/b for thick ([±h/90/0]4s) laminated cylindrical panels.
Fig. 9a indicates that the results of optimization for these
panels with different end conditions vary between 14� and
25�. Fig. 9b shows a trend similar to Fig. 8b except that
the values of the optimal buckling loads of thick panels
are higher than those of thin panels. Typical buckling
modes for both thin and thick ([±h/90/0]s and [±h/90/
0]4s) panels with four fixed ends and under optimal fiber
orientations are given in Fig. 10. We can find that as the
panel aspect ratio increase, the buckling modes of these
panels have more waves in the axial direction. Similar
results are also obtained for panels with other end condi-
tions [24].

6.3. Laminated cylindrical panels with various central

circular cutouts and end conditions

In this section, laminated cylindrical panels with
a = b = 10 cm, / = 60� are analyzed (Fig. 2). These panels
tral circular cutout, with [±h/90/0]ns layup and under optimal fiber angles
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contain central circular cutouts with diameter d which var-
ies between 0 and 6 cm. As before, four types of end condi-
tions and two laminate layups, [±h/90/0]s and [±h/90/0]4s,
are selected for analysis.

Fig. 11 shows the optimal fiber angle h and the associ-
ated optimal buckling load Nxcr with respect to the ratio
d/b for thin ([±h/90/0]s) laminated cylindrical panels. From
Fig. 11a, we can see that the edge conditions have very little
influence on the optimal fiber angle h and h seems to be a
second order function of the d/b ratio. Fig. 11b shows that
the optimal buckling loads decrease with the increase of the
cutout sizes, which is not surprised.

Fig. 12 shows the optimal fiber angle h and the asso-
ciated optimal buckling load Nxcr with respect to the
ratio d/b for thick ([±h/90/0]4s) laminated cylindrical
panels. Fig. 12a indicates that these thick panels are
governed by the boundary conditions at the straight
edges and the values of optimal fiber angles of SFSF
panels and FFFF panels are smaller than those of FSFS
panels and SSSS panels. Fig. 12b again shows that the
optimal buckling loads decrease with the increase of
the d/b ratio.

Typical buckling modes for both thin and thick ([±h/90/
0]s and [±h/90/0]4s) panels with four fixed ends and under
optimal fiber orientations are given in Fig. 13. These modes
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Fig. 14. Effect of end conditions and aspect ratios on optimal fiber angle
and optimal buckling load of thin ([±h/90/0]s) laminated cylindrical panels
with central circular cutout (d/b = 0.6, / = 60�): (a) aspect ratio a/b vs.
optimal fiber angle h; (b) aspect ratio a/b vs. optimal buckling load Nxcr.
show that when the cutout sizes are small, the buckling
modes are global (i.e., buckling of entire panel). However,
when the cutout sizes are large, the buckling modes are
local (i.e., buckling of panel area near hole). Similar results
are also obtained for panels with other end conditions [24].

6.4. Laminated cylindrical panels containing central circular

cutouts with various aspect ratios and end conditions

In this section, laminated cylindrical panels with
b = 10 cm, / = 60� are analyzed (Fig. 2). The length of
the straight edge, a, varies between 10 and 30 cm. These
panels contain central circular cutouts with diameter
d = 6 cm. As before, four types of end conditions, SSSS,
SFSF, FSFS, FFFF, and two laminate layups, [±h/90/0]s
and [±h/90/0]4s, are selected for analysis.

Figs. 14 and 15 show the optimal fiber angle h and the
associated optimal buckling load Nxcr with respect to the
aspect ratio a/b for both thin and thick ([±h/90/0]s and
[±h/90/0]4s) laminated cylindrical panels. Figs. 14a and
15a show that, generally, the optimal fiber angles increase
with the increase of panel aspect ratio. For [±h/90/0]s
panels, the optimal fiber angles of SFSF and FFFF con-
ditions are greater than those of FSFS and SSSS condi-
tions. However, for [±h/90/0]4s panels, the optimal fiber
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Fig. 15. Effect of end conditions and aspect ratios on optimal fiber angle
and optimal buckling load of thick ([±h/90/0]4s) laminated cylindrical
panels with central circular cutout (d/b = 0.6, / = 60�): (a) aspect ratio a/b

vs. optimal fiber angle h; (b) aspect ratio a/b vs. optimal buckling load
Nxcr.



Fig. 16. Typical buckling modes of FFFF laminated cylindrical panels with central circular cutout, with [±h/90/0]ns layup and under optimal fiber angles
(d/b = 0.6, / = 60�).
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angles of SFSF and FFFF conditions are smaller than
those of FSFS and SSSS conditions. Comparing Figs.
14a and 15a with Figs. 8a and 9a, we can see that the cut-
outs have significant influence on the optimal fiber angles
of curved panels. From Figs. 14b and 15b we can see that
as a/b increases, the optimal buckling loads of these pan-
els gradually decrease and diminish to constant values. In
spite of the thickness, the buckling strengths of these pan-
els are governed by the boundary conditions at the
straight edges.

Typical buckling modes for both thin and thick ([±h/
90/0]s and [±h/90/0]4s) panels with four fixed ends and
under optimal fiber orientations are given in Fig. 16.
These modes show that when the panel aspect ratios are
small, the buckling modes are associated to the entire
panel. However, when the panel aspect ratios are large,
the buckling modes are usually local around the cutout
areas. Similar results are also obtained for panels with
other end conditions [24].
7. Conclusions

For the optimal buckling analysis of uniaxially com-
pressed symmetrically laminated cylindrical panels with
different thicknesses, aspect ratios, circular cutouts and
end conditions, the following conclusions may be drawn:

1. Thickness has significant influence on the optimal fiber
angles of the cylindrical panels without cutouts. The
optimal buckling loads of these cylindrical panels
increase with the increasing of panel curvature and are
governed by the boundary conditions at the curved
sides. In addition, the buckling modes of these panels
would have more waves in the axial direction if the panel
curvatures are increased.

2. The optimal buckling loads of the panels without cutout
are governed by the boundary conditions at the curved
edge for short panels and by the boundary conditions
at the straight edge for long panels. In addition, the
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optimal buckling loads of these cylindrical panels
decrease with the increasing of panel aspect ratios. The
buckling mode of these panels would have more waves
in the axial direction if the panel aspect ratios are
increased.

3. The optimal buckling loads of the panels with cutout
decrease with the increasing of cutout size. For thin
panel, the edge conditions have very little influence on
the optimal fiber angle as well as the optimal buckling
load. However, the buckling behavior of the thick panel
is governed by the boundary conditions at the straight
edge. When the cutout sizes are small, the buckling
modes are global for the entire panels. However, when
the cutout sizes are large, the buckling modes are local
around the cutout areas.

4. The optimal buckling loads of the panels with cutout
also decrease with the increasing of panel aspect ratios.
When the panel aspect ratios are small, the buckling
modes are associated to the entire panel. However, when
the panel aspect ratios are large, the buckling modes are
local around the cutout areas.
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