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Free vibration analyses of rotating laminated cylindrical shells are carried out by the ABAQUS© finite element

program. The fundamental frequencies of rotating laminated cylindrical shells with a givenmaterial system are then

maximizedwith respect tofiber orientations byusing the golden sectionmethod. The significant influences of rotating

speed, end conditions, shell thickness, shell length, and shell radius on the maximum fundamental frequencies and

the associated optimal fiber orientations are demonstrated.

Nomenclature

fDg = vector for the unrestrained nodal
degrees of freedom

�K� = structural stiffness matrix
L = length of the shell
�M� = structural mass matrix
fMg � fMx;My;MxygT = moments for composite shell element
fNg � fNx;Ny; NxygT = in-plane forces for composite shell

element
r = radius of the shell
t = thickness of the shell section
fVg � fVx; VygT = transverse shear forces for composite

shell element
f�g � f�xz; �yzgT = transverse shear strains for a lamina

in the element coordinates
f� 0g � f�13; �23gT = transverse shear strains for a lamina

in the material coordinates
f"g � f"x; "y; �xygT = in-plane strains for a lamina in the

element coordinates
f"0g � f"x0; "y0; �xy0gT = in-plane strains at the midsurface of

the laminate section
f"0g � f"1; "2; �12gT = in-plane strains for a lamina in the

material coordinates
� = angle between the material 1 axis

and the element local x axis
f�g � f�x; �y; �xygT = the curvatures of the laminate section
f�g � f�x; �y; �xygT = in-plane stresses for a lamina in the

element coordinates
f�0g � f�1; �2; �12gT = in-plane stresses for a lamina in the

material coordinates
f�g � f�xz; �yzgT = transverse shear stresses for a lamina

in the element coordinates
f�0g � f�13; �23gT = transverse shear stresses for a lamina

in the material coordinates
� = rotating speed of cylindrical shell
! = frequency of the shell

I. Introduction

B ECAUSE of lightweight, high strength, and the flexibility of
selection fiber angle to fit the requirement of design, the

applications of fiber-reinforced composite laminated materials to
advanced aerospace and mechanical structures have been increased

rapidly in recent years. One of the important applications for fiber-
reinforced composite laminated materials is the rotating cylindrical
shell (or rotating shaft) such as gas turbine engines, electric motors,
rotor systems, drilling pipe, etc. Because these kinds of structures are
subjected to dynamic loading in service, knowledge of the dynamic
characteristics of the cylindrical shells such as their fundamental
natural frequencies is essential.

The fundamental natural frequency of rotating composite
laminated cylindrical shells highly depends on the rotating speed
of the shell [1–11], ply orientation [2,4,7,11], end conditions [4,5,9],
and geometric variables of the shell such as thickness, length, and
radius [2,4,6–10]. Therefore, proper selection of appropriate
lamination to maximize the fundamental frequency of rotating
composite laminated cylindrical shells becomes a crucial problem
[12–16] and more research could be done in this area [17].

Research on the subject of structural optimization has been
reported by many investigators [18]. Among various optimization
schemes, the golden section method is a simple technique and can be
easily programmed for solution on the computer [19,20]. In this
investigation, maximization of the fundamental natural frequency of
rotating laminated cylindrical shells with respect to fiber orientations
is performed by using the golden section method. The fundamental
frequencies of laminated cylindrical shells are calculated by using the
ABAQUS finite element program [21]. In the paper, the constitutive
equations for fiber-composite lamina, vibration analysis, and golden
section method are briefly reviewed. The influence of rotating speed,
end conditions, shell thickness, shell length, and shell radius on the
maximum fundamental natural frequency and the associated optimal
fiber orientations of the rotating laminated cylindrical shells is
presented and important conclusions obtained from the study are
given.

II. Constitutive Matrix for Fiber-Composite Laminae

In the finite element analysis, the laminated cylindrical shells are
modeled by eight-node isoparametric shell elements with 6 degrees
of freedom per node (three displacements and three rotations). The
reduced integration rule together with hourglass stiffness control is
employed to formulate the element stiffness matrix [21].

For fiber-composite laminated materials (Fig. 1), the stress–strain
relations for a lamina in the material coordinates at an element
integration point can be written as

f�0g � �Q01�f"0g; f�0g � �Q02�f� 0g (1)
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The �1 and �2 are shear correction factors, which are calculated in
ABAQUS by assuming that the transverse shear energy through the
thickness of laminate is equal to that in unidirectional bending

Received 2 November 2006; revision received 4 April 2007; accepted for
publication 25 April 2007. Copyright © 2007 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 0001-1452/07 $10.00 in
correspondence with the CCC.

∗Professor, Department ofCivil Engineering andSustainable Environment
Research Center. Senior Member AIAA.

†Graduate Research Assistant, Department of Civil Engineering.

AIAA JOURNAL
Vol. 45, No. 8, August 2007

2051

http://dx.doi.org/10.2514/1.28674


[21,22]. The constitutive equations for the lamina in the element
coordinates become

f�g � �Q1�f"g; �Q1� � �T1�T �Q01��T1� (3)

f�g � �Q2�f�g; �Q2� � �T2�T �Q02��T2� (4)
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The element coordinate system has the x, y, and z axes in the
longitudinal direction, the circumferential direction, and the radial
direction of the cylindrical shell, respectively (Fig. 1). If there are n
layers in the layup, the stress resultants can be defined as
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zjt and zjb are the distances from the midsurface of the section to the
top and the bottom of the jth layer, respectively.

III. Vibration Analysis

For the free vibration analysis of an undamped structure, the
equation of motion of the structure can be written in the following
form [23]:

�M�f �Dg � �K�fDg � f0g (7)

The f0g is a zero vector. Since fDg undergoes harmonic motion, we
can express

fDg � f �Dg sin!t; f �Dg � �!2f �Dg sin!t (8)

where the f �Dg vector contains the amplitudes of the fDg vector. Then
Eq. (7) can be written in an eigenvalue expression as

��K� � !2�M��f �Dg � f0g (9)

When a laminated cylindrical shell rotates at a constant speed
about its axial direction, centrifugal forces are developed in the radial
direction of the shell. The centrifugal forces can be treated as initial
loads and cause initial stresses in the shell. Consequently, the
stiffness matrix �K� in Eq. (9) can be separated into two matrices as

�K� � �KL� � �K� � (10)

The �KL� is the traditional linear stiffness matrix and �K� � is a
geometric stress stiffness matrix due to the preload, that is, the
centrifugal forces. Then Eq. (9) becomes

��KL� � �K� � � !2�M��f �Dg � f0g (11)

The above equation is an eigenvalue expression. If f �Dg is not a zero
vector, we must have

j�KL� � �K� � � !2�M�j � 0 (12)

In ABAQUS, a subspace iteration procedure [21] is used to solve for
the natural frequency !, and the eigenvectors (or vibration modes)

f �Dg. The obtained smallest natural frequency (fundamental
frequency) is then the objective function for maximization.

IV. Golden Section Method

We begin by presenting the golden section method [19,20] for
determining the minimum of the unimodal function F, which is a
function of the independent variable X. It is assumed that lower
boundXL and upper boundXU onX are known and theminimumcan
be bracketed (Fig. 2). In addition, we assume that the function has
been evaluated at both bounds and the corresponding values are FL

Fig. 1 Material, element, and structure coordinates of rotating fiber-
composite laminated cylindrical shell.

Fig. 2 The golden section method.
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andFU. Nowwe can pick up two intermediate pointsX1 andX2 such
that X1 < X2 and evaluate the function at these two points to provide
F1 andF2. BecauseF1 is greater thanF2, nowX1 forms a new lower
bound and we have a new set of bounds, X1 and XU. We can now
select an additional point,X3, forwhichwe evaluateF3. It is clear that
F3 is greater than F2, so X3 replaces XU as the new upper bound.
Repeating this process, we can narrow the bounds to whatever
tolerance is desired.

To determine the method for choosing the interior points
X1; X2; X3; . . ., we pick the values of X1 and X2 to be symmetric
about the center of the interval and satisfying the following
expressions:

X U � X2 � X1 � XL (13)

X1 � XL
XU � XL

� X2 � X1

XU � X1

(14)

Let � be a number between 0 and 1. We can define the interior point
X1 and X2 to be

X 1 � �1 � ��XL � �XU (15a)

X 2 � �XL � �1 � ��XU (15b)

Substituting Eqs. (15a) and (15b) into Eq. (14), we obtain
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Fig. 4 Effect of end condition on fundamental frequency of thin ���=90=0�2s laminated cylindrical shells (r� 10 cm).

Fig. 3 Boundary conditions of cylindrical shells.

HU AND WANG 2053



�2 � 3� � 1� 0 (16)

Solving the above equation, we obtain � � 0:38197. The ratio �1 �
��=� � 1:61803 is the famous “golden section” number. For a
problem involving the estimation of the maximum of a one-variable
function F, we need only minimize the negative of the function, that
is, minimize �F.

V. Numerical Analysis

A. Accuracy of Shell Elements

Before the numerical analysis, the accuracy of the eight-node shell
element has been verified by analyzing an isotropic cylindrical shell
with free edges at both ends. The thickness of the shell is
t� 3:81 cm, the length L� 24:5 cm, the radius r� 9:525 cm, and
the rotating speed �� 50 Hz. Young’s modulus, Poisson’s ratio,
and density of the shell are E� 207 GPa, �� 0:28, and
�� 7860 kg=m3. The numerical solution obtained by theABAQUS
employing 640 eight-node shell elements (32 rows in the
circumferential direction and 20 rows in the longitudinal direction)
is !� 2463 s�1, which is in good agreement with the result,
!� 2477 s�1, obtained by Guo et al. [24]. On the basis of this result
and previous experience on the convergent studies of composite
cylindrical shells [15,25], it is decided to use 160 �32 � 5�, 320
�32 � 10�, 480 �32 � 15�, and 640 �32 � 20� elements to model the
laminated cylindrical shells having L=r ratio equal to 1, 2, 3, and 6
for the following numerical analyses.
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Fig. 5 Effect of the L=r ratio and rotating speed � on fundamental frequency of thin ���=90=0�2s laminated cylindrical shells with two fixed ends

(r� 10 cm).
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B. Thin ���=90=0�2s Laminated Cylindrical Shells with Various End

Conditions, Lengths, and Rotating Speeds

In this section composite laminated cylindrical shells with three
types of end conditions (Fig. 3) are considered, which are two ends
fixed (denoted by FF), one end simply supported and the other end
fixed (denoted by SF), and two ends simply supported (denoted by
SS). These boundary conditions are specified in the local coordinate
system of shell, in which x is the longitudinal direction, y the
circumferential direction, and z the radial direction. The radius of the
shell r is equal to 10 cm and the length of the shellL varies from 10 to
60 cm. The laminate layup of the shells is �	�=90=0�2s (16-ply thin
shell) and the thickness of each ply is 0.125 mm. To study the
influence of rotating speed on the results of optimization, �� 0,
10,000, 20,000 rpm are selected for analysis. The lamina consists of
graphite/epoxy and material constitutive properties are taken from
Crawley [26], which are E11 � 128 GPa, E22 � 11 GPa,
�12 � 0:25, G12 �G13 � 4:48 GPa, G23 � 1:53 GPa, and ��
1500 kg=m3. In the analysis, no symmetry simplifications are made
for those shells.

Figure 4 shows the fiber angle � and the associated fundamental
frequency ! for thin �	�=90=0�2s laminated cylindrical shells with
various boundary conditions, L=r ratios, and rotating speeds. From
Figs. 4b, 4d, and 4f, we can observe that the boundary conditions
have almost no influence on the fundamental frequency of the
laminated cylindrical shells with largeL=r ratio (sayL=r� 4). From
Figs. 4a, 4c, and 4e, we can observe that the boundary conditions do
have some influences on the fundamental frequency of the laminated
cylindrical shells with small L=r ratio (i.e., L=r� 2). However,
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Fig. 8 Effect of end condition on fundamental frequency of thin ����4s laminated cylindrical shells (r� 10 cm).

Fig. 7 Fundamental vibration mode of thin ���=90=0�2s laminated

cylindrical shells with two fixed ends and under optimal fiber angles
(r� 10 cm).
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these influences are rather insignificant. As a result, the remaining
numerical analyses are focused on laminated cylindrical shells with
two fixed ends only.

Figure 5 shows the effect of L=r ratio and rotating speed� on the
fundamental frequency ! of thin �	�=90=0�2s laminated cylindrical
shells with two fixed ends. It can be seen that the shells with higher
rotating speed generally yield higher fundamental frequency. In
addition, the shells with smaller L=r ratio usually render higher
fundamental frequency too.

To find the optimal fiber angle � and the associated optimal
fundamental frequency !, we can express the optimization problem
as

maximize : !��� (17a)

subjected to : 0 
 � 
 90 deg (17b)

Before the golden section method is carried out, the fundamental
frequency ! of the laminated cylindrical shell is calculated by
employing the ABAQUS finite element program for every 10 deg
increment in the � angle to locate the maximum point approximately
as shown by Fig. 5. Then proper upper and lower bounds are selected
and the golden section method is performed. The optimization
process is terminated when an absolute tolerance (the difference of
the two intermediate points between the upper bound and the lower
bound) �� 
 0:5 deg is reached.

Figure 6 shows the optimalfiber angle � and the associated optimal
fundamental frequency ! versus the L=r ratio for thin �	�=90=0�2s
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Fig. 9 Effect of theL=r ratio and rotating speed� on fundamental frequency of thin ����4s laminated cylindrical shellswith twofixed ends (r� 10 cm).
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laminated cylindrical shells. From Fig. 6awe can see that the optimal
fiber angle � of the cylindrical shell oscillates between 30 and 80 deg
when the rotating speed of the shell is slow (say � 
 10k � rpm).
However, when the rotating speed of the shell is fast (say
�� 10k � rpm), the optimal fiber angle � of the cylindrical shell
decreases monotonically with the increasing of the L=r ratio.
Figure 6b shows that the optimal fundamental frequency! decreases
with the increasing of the L=r ratio. Under the same L=r ratio, the
higher the rotating speed �, the higher the optimal fundamental
frequency !.

Figure 7 shows the fundamental vibration modes of thin
�	�=90=0�2s laminated cylindrical shells with two fixed ends and
under the optimal fiber orientation. We can find that when the
rotating speed or the L=r ratio increases, the fundamental vibration
modes of these cylindrical shells would have less waves in the
circumferential direction. The reason for the mode switching is that
the increase of the rotating speed or the L=r ratio weakens the
stiffness of composite shell structures. Consequently, the oscillations
in the results as shown in Fig. 6amight be due to themode switching.

C. Thin ����4s Laminated Cylindrical Shells with Various End

Conditions, Lengths, and Rotating Speeds

In this section, laminated cylindrical shells similar to the previous
section are analyzed except that the laminate layup is changed to
�	��4s. Figure 8 shows the fiber angle � and the associated
fundamental frequency! for thin �	��4s laminated cylindrical shells
with various boundary condition, L=r ratio, and rotating speed �.

Fig. 11 Fundamental vibration mode of thin ����4s laminated

cylindrical shells with two fixed ends and under optimal fiber angles
(r� 10 cm).
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Fig. 12 Effect of the L=r ratio and rotating speed� on fundamental frequency of thick ���=90=0�10s laminated cylindrical shells with two fixed ends
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Similar to the �	�=90=0�2s shells, the influences of boundary
conditions on the fundamental frequency ! of the �	��4s shells are
rather insignificant. As a result, the remaining numerical analyses are
focused on laminated cylindrical shells with two fixed ends only.

Figure 9 shows the effect of the L=r ratio and rotating speed� on
the fundamental frequency ! of thin �	��4s laminated cylindrical
shells with two fixed ends. Again, the shells with higher rotating
speed and with smaller L=r ratio generally yield higher fundamental
frequency.

Figure 10 shows the optimal fiber angle � and the associated
optimal fundamental frequency! versus theL=r ratio for thin �	��4s
laminated cylindrical shells. From Fig. 10a we can see that the
optimalfiber angle � of the cylindrical shell oscillates between 25 and
45 deg when the rotating speed of the shell is slow (say
�< 10k � rpm). However, when the rotating speed of the shell is fast
(say� � 10k � rpm), the optimal fiber angle � of the cylindrical shell
decreases monotonically with the increasing of the L=r ratio.
Figure 10b shows that the optimal fundamental frequency !
decreases with the increasing of theL=r ratio. Again, under the same
L=r ratio, the higher the rotating speed �, the higher the optimal
fundamental frequency !. Comparing Fig. 10a with Fig. 6a, we can
find that under the same geometry and rotating speed, the optimal
fiber angles of �	��4s shells are usually smaller than those of
�	�=90=0�2s shells. Comparing Fig. 10b with Fig. 6b, we can find
that under the same geometry and rotating speed, the optimal
fundamental frequencies of �	��4s shells are slightly higher than
those of �	�=90=0�2s shells.

Figure 11 shows the fundamental vibration modes of thin �	��4s
laminated cylindrical shells with two fixed ends and under the
optimal fiber orientation. Again, when the rotating speed or the L=r
ratio increases, the fundamental vibration modes of these cylindrical
shells would have less waves in the circumferential direction.
Comparing Fig. 11 with Fig. 7, we can observe that under the same
geometry and rotating speed, the fundamental vibration modes of
�	��4s shells would havemore waves in the circumferential direction
than those of �	�=90=0�2s shells.

D. Thick ���=90=0�10s Laminated Cylindrical Shells with Various

Lengths and Rotating Speeds

In this section, laminated cylindrical shells similar to previous
sections are analyzed except that the laminate layup is changed to
�	�=90=0�10s. Figure 12 shows the effect of theL=r ratio and rotating

speed � on the fundamental frequency ! of thick �	�=90=0�10s
laminated cylindrical shells with two fixed ends. Again, the shells
with higher rotating speed and with smaller L=r ratio generally yield
higher fundamental frequency. Comparing Fig. 12 with Fig. 5, we
can see that the influence of the rotating speed on the fundamental
frequency of thick laminated cylindrical shells is insignificant
especially when the L=r ratio is small.

Figure 13 shows the optimal fiber angle � and the associated
optimal fundamental frequency ! versus the L=r ratio for thick
�	�=90=0�10s laminated cylindrical shells. From this figure we can
see that the influence of rotating speed on the optimal fiber angle as
well as the associated optimal fundamental frequency is very small.
Comparing Fig. 13b with Fig. 6b, we can find out that the optimal
fundamental frequencies of thick shells are approximately twice as
high as those of thin shells.

Figure 14 shows the fundamental vibration modes of thick
�	�=90=0�10s laminated cylindrical shells with two fixed ends and
under the optimal fiber orientation. It can be seen that the
fundamental vibration modes of the shells would have less waves in
the circumferential direction when the L=r ratio is large. However,
the fundamental vibration modes of these thick shells are insensitive
to the rotating speed. Figure 15 shows the increase of the optimal
fundamental frequency (compared to the same shell with no rotating
speed) versus theL=r ratio for �	�=90=0�2s and �	�=90=0�10s shells.
We can see that the increase of the fundamental frequency is rather
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Fig. 14 Fundamental vibration mode of thick ���=90=0�10s laminated
cylindrical shells with two fixed ends and under optimal fiber angles
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small for thick �	�=90=0�10s shells. On the other hand, the increase of
the fundamental frequency is significant for thin �	�=90=0�2s shells
especially when the rotating speed is large (say 43% increase in
optimal fundamental frequency for a shell with L=r� 6 and
�� 20k � rpm).

E. Thick ����20s Laminated Cylindrical Shells with Various Lengths

and Rotating Speeds

In this section, laminated cylindrical shells similar to previous
sections are analyzed except that the laminate layup is changed to
�	��20s. Figure 16 shows the effect of theL=r ratio and rotating speed
� on the fundamental frequency ! of thick �	��20s laminated
cylindrical shells with two fixed ends. Again, the shells with higher
rotating speed and with smaller L=r ratio generally yield higher
fundamental frequency. Comparing Fig. 16 with Fig. 9, we can also
observe that the influence of rotating speed on the fundamental
frequency of thick laminated cylindrical shells is insignificant
especially when the L=r ratio is small.

Figure 17 shows the optimal fiber angle � and the associated
optimal fundamental frequency ! versus the L=r ratio for thick
�	��20s laminated cylindrical shells. From Fig. 17a, we can see that
the influence of rotating speed on the optimal fiber angle is small
when the rotating speed of the shell is slow (say � 
 10k � rpm).
Nevertheless, the optimal fundamental frequency ! is insensitive to
the rotating speed as shown by Fig. 17b. Comparing Fig. 17a with
Fig. 10a, we canfind that the optimal fiber angles of �	��20s shells are
usually larger than those of �	��4s shells. Comparing Fig. 17b with
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Fig. 10b, we find that the optimal fundamental frequencies of thick
shells are again about twice as high as those of thin shells.

Figure 18 shows the fundamental vibration modes of thick �	��20s
laminated cylindrical shells with two fixed ends and under the
optimal fiber orientation. It can be seen that the fundamental
vibration modes of the shells would have less waves in the
circumferential direction when the L=r ratio is large. However, the
fundamental vibration modes of these thick shells are insensitive to
the rotating speed. Figure 19 shows the increase of the optimal
fundamental frequency (compared to the same shell with no rotating
speed) versus the L=r ratio for �	��4s and �	��20s shells. We can see
that the increase of the fundamental frequency is rather small again
for thick �	��20s shells. On the other hand, the increase of the
fundamental frequency is significant for thin �	��4s shells especially
when the rotating speed is large (say 69% increase in optimal
fundamental frequency for shells with L=r� 6 and�� 20k � rpm).

VI. Conclusions

Based on the numerical results of this investigation, the following
conclusions may be drawn:

1) The boundary conditions have very little influence on the
fundamental frequency of the laminated cylindrical shells with large
L=r ratio, though the boundary conditions do have some influence on
the numerical results for the laminated cylindrical shells with small
L=r ratio. However, these influences are really insignificant.

2) The laminated cylindrical shells with higher rotating speed and
with smallerL=r ratio generally yield higher fundamental frequency.

3) Rotating speed has more influence on the optimal fiber angle
and optimal fundamental frequency of thin �	�=90=0�2s and �	��4s
laminated cylindrical shells. On the other hand, rotating speed has
less influence on the optimal fiber angle and optimal fundamental
frequency of thick �	�=90=0�10s and �	��20s laminated cylindrical
shells.

4)When theL=r ratio increases, the fundamental vibration modes
of both thin and thick cylindrical shells would have less waves in the
circumferential direction. In addition, when the rotating speed
increases, the fundamental vibration modes of thin cylindrical shells
also would have less waves in the circumferential direction. The
reason for the mode switching is that the increase of the L=r ratio or
the rotating speedweakens the stiffness of composite shell structures.
Consequently, many of the oscillations in the results might be due to
the mode switching. On the other hand, the fundamental vibration
modes of thick cylindrical shells are insensitive to the rotating speed.
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