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Abstract

A nonlinear material constitutive model, including a nonlinear in-plane shear formulation and the Tsai–Wu failure criterion, for fiber–

composite laminate materials is employed to carry out finite element buckling analyses for composite laminate skew plates under uniaxial

compressive loads. The influences of laminate layup, plate skew angle and plate aspect ratio on the buckling resistance of composite laminate

skew plates are presented. Comparing with the linearized buckling loads of the skew plates, one can observer that the nonlinear in-plane

shear together with the failure criterion have significant influence on the ultimate loads of the composite laminate skew plates with [Gq]10S

and [Gq/90/0]5S layups but not the [a/0]10S layup.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to light weight and high strength, the use of fiber–

composite laminate materials has been increased rapidly in

recent year. The composite laminate plates in service are

commonly subjected to compressive forces that may cause

buckling. Hence, structural instability becomes a major

concern in safe and reliable designs of the composite plates.

In the literature, most stability studies of fiber–composite

laminate plates have been focused on the rectangular plates

[1–10]. Less attention has been paid to the skew laminate

plates [11–15]. It is known that the buckling resistance of

rectangular composite laminate plates depends on end

conditions [4,8], ply orientations [1,2,4,5,8,9], and geo-

metric variables such as aspect ratio, thickness and cutout

[3,4,6–8,10]. For skew composite plates, the plate skew

angle, a (Fig. 1), should also be a key factor influencing the

buckling resistance of the plates [11–15]. It is known that

unidirectional fibrous composites exhibit severe nonlinear-

ity in in-plane shear stress-strain relation [16,17]. As a result,
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the buckling resistance of composite plates is also

influenced by the nonlinear behavior of the materials [18].

In this paper, a material model including the nonlinear in-

plane shear and the Tsai–Wu failure criterion [19] is

reviewed first. Then, nonlinear buckling analyses for simply

supported composite skew plates under uniaxial compres-

sive force N (Fig. 1) are carried out using the ABAQUS

finite element program [20]. The plates in analysis have

various laminate layups, plate skew angles and plate aspect

ratios. Numerical results for the material nonlinear buckling

behavior of these composite plates are compared with those

using linear material properties. Through this study, the

influences of laminate layups, plate skew angles and plate

aspect ratios on the buckling resistance of skew composite

plates are demonstrated.
2. Nonlinear material model for composite materials
2.1. Constitutive modeling of lamina

For fiber–composite laminate materials (Fig. 2), each

lamina can be considered as an orthotropic layer in a plane

stress condition. Let us define D{s 0}ZD{s1,s2,t12}T,

Dft0
tgZDft13; t23g

T, D{3 0}ZD{31,32,g12}T, Dfg0
tgZDfg13;

g23g
T. Then the incremental stress-strain relations for
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Fig. 1. Composite laminate skew plate with simply supported edge condition.

Fig. 2. Material, element and structure coordinates of fiber–composite

laminate materials.
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a linear orthotropic lamina in the material coordinates

(1,2,3) can be written as

Dfs0g Z ½Q0
1�Df30g (1)

Dft0
tg Z ½Q0

2�Dfg0
tg (2)

½Q0
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" #
(4)

where a1 and a2 are the shear correction factors [21] and are

taken to be 0.83 in this study.

It is known that unidirectional fibrous composites exhibit

severe nonlinearity in in-plane shear stress-strain relation

[16]. Though deviation from linearity is also observed in

transverse loading direction, i.e. 2-direction, the degree of

this nonlinearity is not comparable to that in the in-plane

shear. Therefore, it has been suggested that the nonlinearity

associated with the transverse loading direction could be

ignored for graphite/epoxy and boron/epoxy [17]. To model

the nonlinear in-plane shear behavior, the nonlinear strain-

stress relation for a composite lamina suggested by Hahn

and Tsai [16] is adopted in this study, which is given as

follows:
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(5)

In this model only one constant S6666 is required to account

for the in-plane shear nonlinearity. The value of S6666 can be

determined by a curve fit to various off-axis tension test data

[16]. Inverting and differentiating Eq. (5), we obtain
the nonlinear incremental constitutive matrix for the lamina

as follows:

½Q0
1�Z

E11

1Kn12n21

n12E22

1Kn12n21

0

n21E11

1Kn12n21

E22

1Kn12n21

0

0 0
1

1=G12 C3S6666t2
12

2
6666664

3
7777775

(6)

The validity of using Eq. (6) to model the nonlinear in-

plane shear has been demonstrated by Hahn and Tsai [16]

and is not repeated here. Furthermore, it is assumed that the

transverse shear stresses always behave linearly and do not

affect the nonlinear behavior of in-plane shear. Hence, the

same shear correction factors and shear moduli for

transverse shear as those given in Eq. (4) also apply to the

cases of nonlinear in-plane shear.
2.2. Failure criterion and degradation of stiffness

Among existing failure criteria, the Tsai–Wu criterion

[19] has been extensively used in literature and it is adopted

in this analysis. Under plane stress conditions, this failure

criterion has the following form:

F1s1 CF2s2 CF11s2
1 C2F12s1s2 CF22s2

2 CF66t2
12 Z 1

(7)
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and

F1 Z
1

�X 0 C
1

�X 0 ; F2 Z
1

�Y 0 C
1

�Y 0 ;

F11 Z
K1

�X �X 0 ; F22 Z
K1

�Y �Y 0 ; F66 Z
1

�S2
:

The �X, Y and �X 0
, �Y 0

are the lamina longitudinal and

transverse strengths in tension and compression, respect-

ively, and �S is the shear strength of the lamina. Though the

stress interaction term F12 in Eq. (7) is difficult to be

determined, it has been suggested by Narayanaswami and

Adelman [22] that F12 can be set equal to zero for practical

engineering applications. Therefore, F12Z0 is used in this

investigation.

During the numerical calculation, incremental loading is

applied to composite plates until failures in one or more of

individual plies are indicated according to Eq. (7). Since the

Tsai–Wu criterion does not distinguish failure modes, the

following two rules are used to determine whether the ply

failure is caused by resin fracture or fiber breakage [23]:

(1) If a ply fails but the stress in the fiber direction remains

less than the uniaxial strength of the lamina in the fiber

direction, i.e. �X 0!s1! �X, the ply failure is assumed to

be resin induced. Consequently, the laminate loses its

capability to support transverse and shear stresses, but

remains to carry longitudinal stress. In this case, the

constitutive matrix of the lamina becomes

½Q0
1� Z

E11 0 0

0 0 0

0 0 0

2
64

3
75 (8)

(2) If a ply fails with s1 exceeding the uniaxial strength of

the lamina, the ply failure is caused by the fiber

breakage and a total ply rupture is assumed. In this case,

the constitutive matrix of the lamina becomes

½Q0
1� Z

0 0 0

0 0 0

0 0 0

2
64

3
75 (9)

The ABAQUS program does not have the aforemen-

tioned nonlinear constitutive model for fiber–composite

laminate materials in material library. Hence, these non-

linear constitutive equations for the composite lamina are

coded in FORTRAN language as a subroutine and linked to

the ABAQUS program.
2.3. Constitutive modeling of composite shell section

The elements used in the finite-element analyses are

eight-node isoparametric shell elements with six degrees of

freedom per node (three displacements and three rotations).
The formulation of the shell allows transverse shear

deformation and these shear flexible shells can be used for

both thick and thin shell analysis [20]. During a finite

element analysis, the constitutive matrix of composite

materials at the integration points of shell elements must be

calculated before the stiffness matrices are assembled from

the element level to the structural level. For composite

materials, the incremental constitutive equations of a lamina

in the element coordinates (x,y,z) can be written as:

Dfsg Z ½Q1�Df3g (10)

Dfttg Z ½Q2�Dfgtg (11)

where D{s}ZD{sx,sy,txy}
T, D{tt}ZD{txz,tyz}

T, D{3}Z
D{3x,3y,gxy}

T, D{gt}ZD{gxz,gyz}
T, and

½Q1� Z ½T1�
T½Q0

1�½T1� (12)

½Q2� Z ½T2�
T½Q0

2�½T2� (13)

½T1� Z

cos2q sin2q sin q cos q

sin2q cos2q Ksin q cos q

K2 sin q cos q 2 sin q cos q cos2q Ksin2q

2
664

3
775
(14)

½T2� Z
cos q sin q

Ksin q cos q

" #
(15)

The q is measured counterclockwise from the element local

x-axis to the material 1-axis (Fig. 2). Assume D{3o}Z
D{3xo,3yo,gxyo}T are the incremental in-plane strains at the

mid-surface of the shell section and D{k}ZD{kx,ky,kxy}
T

are the incremental curvatures. The incremental in-plane

strains at a distance z from the mid-surface of the shell

section become

Df3g Z Df3ogCzDfkg (16)

Let h be the total thickness of the composite shell section,

the incremental stress resultants, D{N}ZD{Nx,Ny,Nxy}
T,

D{M}ZD{Mx,My,Mxy}
T and D{V}ZD{Vx,Vy}, can be

defined as:
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>:

9>=
>; Z
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3
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Dfgtg
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>:

9>=
>; (17)

where [0] is a 3 by 2 null matrix.

For the nonlinear material case, the ½Q0
1� matrix in

Eq. (12) can be taken from Eqs. (6), (8) or (9) and the

incremental stress resultants of Eq. (17) can be obtained by
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a numerical integration through the thickness of the

composite shell section. For the linear material case,

the ½Q0
1� matrix used in Eq. (12) is taken from Eq. (3) and

the incremental stress resultants of the shell section can be

written as a summation of integrals over the n laminae in the

following form:
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DfMg
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9>=
>; Z
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3
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9>=
>; (18)
where zjt and zjb are distances from the mid-surface of the

section to the top and the bottom of the jth layer

respectively.

Prior to numerical analyses, the ABAQUS program has

been employed to analyze the buckling of composite

cylindrical panels with cutout and buckling of isotropic

skew plates. These solutions are compared with known

benchmark solutions [24,25] and satisfactory results are

obtained [26].
1.6

[0]
16

 Exp.
3. Nonlinear finite element analysis

In the ABAQUS finite element program, the nonlinear

response of a structure is modeled by an updated Lagrangian

formulation and a modified Riks nonlinear incremental

algorithm [20] can be used to construct the equilibrium

solution path. To model bifurcation from the prebuckling

path to the postbuckling path, geometric imperfections of

composite plates are introduced by superimposing a small

fraction of the lowest eigenmode, determined by a

linearized buckling analysis, to the original nodal coordi-

nates of plate as

fIg Z ffgCbhfjg (19)

where {I} represents the vector containing imperfect nodal

coordinates of the plate, {f} is the vector containing

original nodal coordinates of the plate, {j} is the

normalized lowest eigenmode, and b is a scaling coefficient.

Based on the results of various imperfection analyses [27], it

is decided to use bZ0.005 throughout the numerical

analyses.
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Fig. 3. Comparisons of numerical and experimental results.
4. Numerical analyses

4.1. Verification of the proposed material

constitutive models

The validity of the nonlinear material constitutive

models to simulate the behavior of composite materials

has been examined in this section by comparing with

the experiment results performed by Soutis [28]. The tested
specimens have two types of laminate layups, i.e. [0]16 and

[(G45/02)3]S, and are both subjected to uniaxial compres-

sive force in the longitudinal direction (Fig. 3). The two

loading edges of the laminates are assumed to be fixed and

the remaining two edges are free. The laminates are
consisted of T800/924C carbon-fibre/epoxy composite

with the following material properties: E11Z168 GPa,

E22Z9.25 GPa, n12Z0.35, G12Z6 GPa, S6666Z7!10K20

(Pa)-3, �XZ2:32 GPa, �X 0ZK1:62 GPa, �Y Z63 MPa,
�Y 0ZK63 MPa, �SZ105 MPa. The thickness of each ply is

0.125 mm. Since the stress field is uniform throughout the

specimen, only one shell element is used to model the entire

composite laminate in the numerical analysis.

Fig. 3 also shows the stress versus strain curves of the

composite laminates in the longitudinal direction. It can be

observed that the correlations are quite good between

the numerical results and the experimental data whether the

shear stresses in the laminate are significant (i.e. [(G45/

02)3]S layup) or not (i.e., [0]16 layup). The predicted ultimate

strength 1.6 GPa for [0]16 laminate is in good agreement

with the experimental ultimate strength 1.55 GPa. The error

is only about 3.2%. In addition, the predicted ultimate

strength 0.81 GPa for [(G45/02)3]S laminate is also in good
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agreement with the experimental ultimate strength

0.80 GPa. The error is only about 1.3%. Hence, the

proposed material constitutive models are proved to be

able to simulate the nonlinear behavior of composite

materials correctly. More numerical verifications of the

proposed nonlinear constitutive material models against

other experimental data have also been done by the author

[29,30] and are not duplicated here.
4.2. Composite laminate skew plates with [Gq]10S layup

In this section composite laminate plates subjected to

uniaxial compressive force N per unit length in x direction
0
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Fig. 5. Load–displacement curves for composite laminate skew plate w
as shown in Fig. 1 are analyzed. These plates are simply

supported at the edges and the edge conditions prevent out

of plane displacement w but allow in-plane movements u

and v. The width ‘b’ of these plates is fixed to 10 cm and the

length ‘a’ of the plates varies between 5 cm and 20 cm. The

thickness of the plates is 0.5 cm and the skew angle a varies

between 508 and 908. The laminate layup of the plates is

[Gq]10S and the ply constitutive properties are

E11Z128 GPa, E22Z11 GPa, n12Z0.25, G12ZG13Z
4.48 GPa, G23Z1.53 GPa, S6666Z7.31 (GPa)K3,
�XZK �X 0Z1450 MPa, Y Z52 MPa, �Y 0ZK206 MPa and

SZ93 MPa. The linear and nonlinear in-plane shear

stress-strain curves are shown in Fig. 4. In the finite element

analysis, no symmetry simplifications are made. Based on

past experience [14], a 10!10 finite element mesh (100

elements) is used to model the plates.

Fig. 5 shows the load-displacement curves for composite

laminate skew plates with aspect ratio a/bZ1, skew angle

aZ508 and [Gq]10S laminate layup. The N is the force per

unit length in x direction (positive value means com-

pression) applied to the edge and u is the associated end

displacement (positive value means end extension and

negative value means end shortening). For plates with

[0/K0]10S and [90/K90]10S layups, it can be seen that the

curves computed by using linear and nonlinear in-plane

shear formulations are very close. This is because that all the

fibers are parallel or normal to the loading direction and

shear stress is insignificant in the plates. For the analyses
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carried out using the nonlinear in-plane shear formulation

together with the Tsai–Wu failure criterion, the composite

plates behave almost linearly until sudden collapses of the

plates occur. The predicted ultimate load is about 95% of the

linearized buckling load for plate with [0/K0]10S layup and

is about 52% for plate with [90/K90]10S layup.

For skew plate with [30/K30]10S and [60/K60]10S

layups, the fiber angles are away from the loading or the

transverse loading directions. In these plates, shear stress

start to develop and the curves with nonlinear shear

formulation show moderate deviations from the curves

with linear shear formulation. For the analyses carried out

using the nonlinear in-plane shear formulation together with

the Tsai–Wu criterion, the predicted ultimate load is about

37% of the linearized buckling load for plate with

[30/K30]10S layup and about 34% for plate with

[60/K60]10S layup.

For plate with [45/K45]10S layup, each lamina is subjected

to severe shear loading. With the nonlinear in-plane shear

formulation alone, the plate exhibit significantly nonlinear

behavior throughout the entire loading stage. The load

carrying capacity for the plate with the nonlinear in-plane

shear formulation is much less than that with the linear shear

formulation. In addition, the predicted ultimate load is only

about 30% of the linearized buckling load, which is the lowest

percentage value among all the plates in analysis.

The load-displacement curves for [Gq]10S composite

laminate skew plates with other aspect ratios (a/bZ0.5, 2)
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and skew angles (aZ708, 908) show similar trends as those

in Fig. 5 and are not duplicated here. Figs. 6–8 show the

effect of skew angle a and material nonlinearity on buckling

loads of composite laminate skew plate with [Gq]10S layup.

From Figs. 6(a), 7(a) and 8(a), it can be observed that with

the same laminate layup and the same plate skew angle, the

linearized buckling load Ncr increases with the decrease of

plate aspect ratio. In addition, with the same laminate layup

and plate aspect ratio, the linearized buckling load increases

with the decreasing of angle a. Furthermore, the curve with

aZ708 is closer to that with aZ908 than to that with aZ
508. It can be concluded that the larger the a angle, the

smaller the increasing/decreasing rate in Ncr. When the plate

aspect ratio a/b is small (say a/b%0.5), the optimal fiber

angle q for skew plate with [Gq]10S laminate layup seems to

close to 08. This phenomenon is more prominent when the

skew angle a is equal to or greater than 708. On the other

hand, when the plate aspect ratio a/b is large (say a/bS1),

the optimal fiber angle q seems to be around 458. This

phenomenon seems to be independent on the skew angle a.

From Figs. 6(b), 7(b) and 8(b), it can be seen that the

ultimate load Nu seems to be independent on the fiber angle

q, the skew angle a and the aspect ratio a/b when the fiber

angle qS308. When q%308 and a/b is small (say a/b%0.5),

the ultimate load of the skew plate seems to be insensitive to

the skew angle a. When q%308 and a/b is large (say a/

bS1), the ultimate load of the skew plate increases with the

decreasing of angle a. When the plate aspect ratio a/b is

small (say a/b%0.5), the optimal fiber angle q seems to be

08. When the plate aspect ratio a/b is large (say a/bS1), the

optimal fiber angle q seems to be around 158.

Comparing Figs. 6(b), 7(b) and 8(b) with Figs. 6(a), 7(a)

and 8(a), we can observe that when the angle q is close to 08,

the effect of nonlinear shear with failure criterion seems to

be insignificant. When the angle q is close to 908, the effect

of nonlinear shear with failure criterion is prominent for

plate with small angle a (say aZ508). This effect is less

significant for plate with large angle a (say aZ908). When
the angle q varies between 158 and 758, the influence of the

nonlinear shear with failure criterion on the ultimate load of

the skew plate is significant, especially for plates with small

angle a. This conclusion is valid whether the plate aspect

ratio is small or large.
4.3. Composite laminate skew plates with [Gq/90/0]5S

layup

In this section composite laminate skew plates similar to

those in previous section are analyzed. However, the

laminate layup is changed to [Gq/90/0]5S. Fig. 9 shows

the load-displacement curves for composite laminate skew

plates with aspect ratio a/bZ1 and skew angle aZ508. For

plates with [0/K0/90/0]5S and [90/K90/90/0]5S layups, it

can be seen that the curves computed by using linear and

nonlinear in-plane shear formulations again are very close.

This is because all the fibers are parallel to or normal to the

loading direction and the shear stresses in the plates are

insignificant. For plate with [45/K45/90/0]5S layup, we

might expect that the nonlinear shear effect to be significant

in the plate. However, the curve computed with nonlinear

in-plane shear formulation is also very close to that with

linear in-plane shear formulation. The reason might be that

the fibers in the 08 direction take the major portion of the

loading and the shear stresses in the 458 and -458 laminae are

not significant enough to cause the difference between the

linear and nonlinear shear formulations. As a result, the

effect of nonlinear in-plane shear stress is insignificant for

the [Gq/90/0]5S composite laminate skew plates. The load-

displacement curves for [Gq/90/0]5S composite laminate

skew plates with other aspect ratios (a/bZ0.5, 2) and skew

angles (aZ708, 908) show similar trends as those in Fig. 9

and are not duplicated here.

Figs. 10–12 show the effect of skew angle a and material

nonlinearity on buckling loads of composite laminate skew

plate with [Gq/90/0]5S layup. From Figs. 10(a), 11(a) and

12(a), it can be observed that with the same laminate layup
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and the same plate skew angle, the linearized buckling load

Ncr increases with the decrease of plate aspect ratio. In

addition, with the same laminate layup and plate aspect

ratio, the linearized buckling load increases with the

decreasing of angle a. Furthermore, the curve with aZ708

is closer to that with aZ908 than to that with aZ508. It can

be concluded that the larger the a angle, the smaller the

increasing/decreasing rate in Ncr. When the plate aspect

ratio a/b is small (say a/b%0.5), the optimal fiber angle q for

skew plate with [Gq/90/0]5S laminate layup seems to close

to 08. This phenomenon is more prominent when the skew

angle a is equal to or greater than 708. On the other hand,

when the plate aspect ratio a/b is large (say a/bS1), the

optimal fiber angle q seems to be around 458. This

phenomenon seems to be independent on the skew angle

a. Generally the conclusions related to the linearized

buckling loads for [Gq/90/0]5S laminate skew plates are

similar to those for [Gq]10S laminate skew plates.

From Figs. 10(b), 11(b) and 12(b), it can be seen that

with the same laminate layup and the same plate skew angle,

the ultimate load Nu increases with the decreasing of plate

aspect ratio. In addition, with the same laminate layup and

plate aspect ratio, the ultimate load increases with the

decreasing of angle a. Furthermore, the curve with aZ708

is closer to that with aZ908 than to that with aZ508. It can

be concluded that the larger the a angle, the smaller

the increasing/decreasing rate in Nu. When the plate aspect
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ratio a/b is small (say a/b%0.5), the optimal fiber angle q for

skew plate with [Gq/90/0]5S laminate layup seems to close

to 08. This phenomenon is more prominent when the skew

angle a is equal to or greater than 708. When the plate aspect

ratio a/b is large (say a/bS1), the optimal fiber angle q
seems to be around 308 to 458.

Comparing Figs. 10(b), 11(b) and 12(b) with Figs. 10(a),

11(a) and 12(a), we can observe that the effect of nonlinear

shear with failure criterion is significant for plates with

small a angle (say a%508) and is insignificant for plates

with large a angle (say aS708). For plates with small a

angle (say a%508), the effect of nonlinear shear with failure

criterion is only significant when the fiber angle q is less

than 158. Comparing the results obtained in this section with

those in previous section, we can find that the influence of

nonlinear shear with failure criterion on the ultimate loads

of laminate skew plates with [Gq/90/0]5S laminate layup is

much less than those with [Gq]10S laminate layup. Hence,

the former laminate layup is a better design than the latter

one in practical engineering applications.
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buckling loads of composite laminate skew plate with ½a=0�10S layup.
4.4. Composite laminate skew plates with [a/0]10S layup

In this section composite laminate skew plates similar to

those in previous sections are analyzed with the laminate

layup changed to [a/0]10S. For this laminate layup, the fiber

directions are all parallel to the edges of the skew plates.

Fig. 13 shows the load-displacement curves for plates with

aspect ratio a/bZ1 and plate skew angle aZ508, 708, 908.

From these figures, it can be seen that the curves computed

by using linear and nonlinear in-plane shear formulations

are almost the same. This is because the fibers in the 08

direction take the major portion of the loading and the shear

stresses in the laminae with fibers in a direction are not

significant enough to cause the difference between the

linear and nonlinear shear formulations. As a result, the

effect of nonlinear in-plane shear stress is insignificant for

the [a/0]10S composite laminate skew plates.
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Fig. 14 shows the effect of skew angle a, aspect ratio a/b

and material nonlinearity on buckling loads of composite

laminate skew plate with [a/0]10S layup. It can be seen that

the linearized buckling loads Ncr of the skew plates again

increase with the decreasing of plate aspect ratio a/b and

with the decreasing of angle a. In addition, the ultimate

loads Nu of the skew plates calculated by the nonlinear shear

formulation with Tsai–Wu failure criterion are very close to

the linearized buckling loads Ncr. Thus, influence of

nonlinear shear with failure criterion on the ultimate loads

of laminate skew plates with [a/0]10S laminate layup is very

limited and material nonlinear buckling analysis of skew

plates with this type of laminate layup may be not necessary.
5. Conclusions

Based on the numerical results from the analyses, the

following conclusions may be drawn:

(1) No matter of plate aspect ratio and skew angle,

nonlinear in-plane shear alone has significant influence

on the load-displacement curves of laminate skew

plates with [Gq]10S laminate layup. This influence is

most significant when q is equal to 458 and less

significant when q deviates from 458.

(2) Nonlinear in-plane shear alone has almost no influence

on the load-displacement curves of laminate skew

plates with [Gq/90/0]5S and [a/0]10S laminate layups.

(3) The linearized buckling loads of the plates with

[Gq]10S, [Gq/90/0]5S and [a/0]10S laminate layups

increase with the decreasing of plate aspect ratio a/b

and with the decreasing of angle a.

(4) For skew plates with both [Gq]10S and [Gq/90/0]5S

layups, the optimal fiber angle q for the linearized

buckling loads seems to close to 08 when the plate

aspect ratio a/b is small (say a/b%0.5). However, when

the plate aspect ratio a/b is large (say a/bS1), the

optimal fiber angle q for plates with both laminate

layups seems to be around 458.

(5) The influence of the nonlinear shear with failure

criterion on the ultimate loads of the laminate skew

plates with [Gq]10S laminate layup is significant,

especially for plates with small angle a. When the

plate aspect ratio a/b is small (say a/b%0.5), the

optimal fiber angle q for the ultimate load seems to be

08. When the plate aspect ratio a/b is large (say a/bS1),

the optimal fiber angle q seems to be around 158.

(6) The influence of the nonlinear shear with failure

criterion on the ultimate loads of the laminate skew

plates with [Gq/90/0]5S laminate layup is significant for

plates with small a angle (say a%508) and is

insignificant for plates with large a angle (say

aS708). When the plate aspect ratio a/b is small

(say a/b%0.5), the optimal fiber angle q for the ultimate

load seems to close to 08. When the plate aspect ratio
a/b is large (say a/bS1), the optimal fiber angle q seems

to be around 308 to 458.

(7) The influence of nonlinear shear with failure criterion

on the ultimate loads of laminate skew plates with

[Gq/90/0]5S laminate layup is much less than those

with [Gq]10S laminate layup. Hence, the former

laminate layup is a better design than the latter one in

practical engineering applications.

(8) The influence of nonlinear shear with failure criterion

on the ultimate loads of laminate skew plates with

[a/0]10S laminate layup is very limited and material

nonlinear buckling analysis of skew plates with this

type of laminate layup may be not necessary.
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