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Abstract

Numerical analyses are performed using the ABAQUS finite element program to predict the ultimate loading capacity of

rectangular reinforced concrete beams strengthened by fiber-reinforced plastics applied at the bottom or on both sides of these

beams. Nonlinear material behavior, as it relates to steel reinforcing bars, plain concrete, and fiber-reinforced plastics is simulated

using appropriate constitutive models. The influences of fiber orientation, beam length and reinforcement ratios on the ultimate

strength of the beams are investigated. It has been shown that the use of fiber-reinforced plastics can significantly increase the

stiffnesses as well as the ultimate strengths of reinforced concrete beams. In addition, with the same fiber-reinforced plastics layer

numbers, the ultimate strengths of beams strengthened by fiber-reinforced plastics at the bottom of the beams are much higher than

those strengthened by fiber-reinforced plastics on both sides of the beams.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The traditional material used in the strengthening of

concrete structures is steel. Because of its drawbacks of

low corrosion resistance and of handling problems in-

volving excessive size and weight, there is a need for the

engineering community to look for alternatives. Due to
lightweight, high strength and good fatigue and corro-

sion properties, fiber-reinforced plastics (FRP) have

been intensively used in the repair and strengthening of

aerospace structures [1–4]. Though the study of using

FRP to strengthen reinforced concrete structures just

started in the 1990s [5–15], the technology is currently

widely used.

To study the behavior of reinforced concrete struc-
tures strengthened by FRP, the fundamental step is to

understand the nonlinear behavior of the constitutive

materials, reinforced concrete and FRP, separately. The

nonlinear behavior of reinforced concrete such as con-

crete cracking, tension stiffening, shear retention, con-

crete plasticity and yielding of reinforcing steel have

been extensively studied by various researchers and
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numerous proper constitutive laws have been proposed

[16–21]. However, in the literature, most studies of re-

inforced concrete structures strengthened by FRP have

assumed that the behavior of FRP is linear. It is well

known that unidirectional fibrous composites exhibit

severe nonlinearity in their in-plane shear stress–strain

relations [22]. In addition, deviation from linearity is
also observed with in-plane transverse loading but the

degree of nonlinearity is not comparable to that ob-

served with the in-plane shear [22,23]. Therefore, ap-

propriate modeling of the nonlinear behavior of FRP

becomes crucial.

In this investigation, proper constitutive models are

introduced to simulate the nonlinear behavior of rein-

forced concrete and FRP. Then the finite element pro-
gram ABAQUS [24] is used to perform a failure analysis

of rectangular reinforced concrete beams strengthened

by FRP. In the numerical analyses, two types of beams,

i.e. a short beam and a long beam, and two types of

reinforcement ratios, i.e. a low and a high steel per-

centage ratio, are considered. The aim of this research is

to study the influence of beam length, reinforcement

ratio and fiber orientation on the globally nonlinear
behavior of rectangular reinforced concrete beams sub-

jected to uniformly distributed load and strengthened by

FRP. In addition, the improvement in stiffness and
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strength as well as the alteration of the failure mecha-

nism of the reinforced concrete beams due to FRP are

investigated.
2. Material properties and constitutive models

The materials used in the analysis involve steel rein-

forcing bars, concrete and FRP. Reliable constitutive
models applicable to steel reinforcing bars and concrete

are available in the ABAQUS material library. Thus,

their input material properties and associated constitu-

tive models are only briefly discussed. The ABAQUS

program does not have a nonlinear material library for

FRP. Hence, its nonlinear constitutive model is dis-

cussed here in detail. The resulting nonlinear constitu-

tive equations for the FRP are coded in FORTRAN
language as a subroutine and linked to the ABAQUS

program.
2.1. Steel reinforcing bar

The steel reinforcement used in the beam is assumed

to have the yielding stress

ry ¼ 344:7 MPa ð50 ksiÞ ð1Þ

while its elastic modulus is assumed to be

Es ¼ 199:9 GPa ð29000 ksiÞ ð2Þ

The stress–strain curve of the reinforcing bar is assumed

to be elastic perfectly plastic as shown in Fig. 1. In

ABAQUS, the steel reinforcement is treated as an

equivalent uniaxial material smeared through out the

element section and the bond–slip effect between con-

crete and steel is not considered. In order to properly

model the constitutive behavior of the reinforcement,
the cross sectional area, spacing, position and orienta-

tion of each layer of steel bar within each element needs

to be specified.
Fig. 1. Elastic perfectly plastic model for steel reinforcing bar.
2.2. Concrete

The concrete has an uniaxial compressive strength f 0
c

selected as

f 0
c ¼ 34:47 MPa ð5 ksiÞ ð3Þ
Under uniaxial compression, the concrete strain eo cor-

responding to the peak stress f 0
c is usually around the

range of 0.002–0.003. A representative value suggested

by ACI Committee 318 [25] and used in the analysis is

eo ¼ 0:003 ð4Þ
The Poisson�s ratio mc of concrete under uniaxial

compressive stress ranges from about 0.15–0.22, with a

representative value of 0.19 or 0.20 [16]. In this study,

the Poisson�s ratio of concrete is assumed to be

mc ¼ 0:2 ð5Þ
The uniaxial tensile strength f 0

t of concrete is difficult

to measure. For this study the value is taken as [16]

f 0
t ¼ 0:33

ffiffiffiffi
f 0
c

p
MPa ð6Þ

The initial modulus of elasticity of concrete Ec is

highly correlated to its compressive strength and can be

calculated with reasonable accuracy from the empirical

equation [25]

Ec ¼ 4700
ffiffiffiffi
f 0
c

p
MPa ð7Þ

Under multiaxial combinations of loading, the failure

strengths of concrete are different from those observed
under uniaxial condition. However, the maximum

strength envelope under multiple stress conditions seems

to be largely independent of load path [26]. In ABA-

QUS, a Mohr–Coulomb type compression surface to-

gether with a crack detection surface is used to model

the failure surface of concrete (Fig. 2). When the prin-

cipal stress components of concrete are predominantly

compressive, the response of the concrete is modeled by
Fig. 2. Concrete failure surface in plane stress.



Fig. 4. Tension stiffening model.
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an elastic–plastic theory with an associated flow and an

isotropic hardening rule. In tension, once cracking is

defined to occur (by the crack detection surface), the

orientation of the crack is stored. Damaged elasticity is
then used to model the existing crack [24].

When plastic deformation occurs, there should be a

certain parameter to guide the expansion of the yield

surface. A commonly used approach is to relate the

multidimensional stress and strain conditions to a pair

of quantities, namely, the effective stress rc and effective

strain ec, such that results obtained following different

loading paths can all be correlated by means of the
equivalent uniaxial stress–strain curve. The stress–strain

relationship proposed by Saenz [27] has been widely

adopted as the uniaxial stress–strain curve for concrete

and it has the following form:

rc ¼
Ecec

1þ ðRþ RE � 2Þ ec
eo

� �
� ð2R� 1Þ ec

eo

� �2

þ R ec
eo

� �3

ð8Þ
where

R ¼ REðRr � 1Þ
ðRe � 1Þ2

� 1

Re
; RE ¼ Ec

Eo
; Eo ¼

f 0
c

eo

and Rr ¼ 4, Re ¼ 4 may be used [20]. In the analysis, Eq.

(8) is taken as the equivalent uniaxial stress–strain curve

for concrete and approximated by several piecewise

linear segments as shown in Fig. 3.

When cracking of concrete takes place, a smeared

model is used to represent the discontinuous macrocrack
behavior. It is known that the cracked concrete of a

reinforced concrete element can still carry some tensile

stress in the direction normal to the crack, which is

termed tension stiffening [16]. In this study, a simple

descending line is used to model this tension stiffening

phenomenon (Fig. 4). The default value of the strain e�

at which the tension stiffening stress reduced to zero is

[24]

e� ¼ 0:001 ð9Þ
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Fig. 3. Equivalent uniaxial stress–strain curve for concrete.
During the postcracking stage, the cracked reinforced

concrete can still transfer shear forces through aggregate

interlock or shear friction, which is termed shear reten-

tion. Assuming that the shear modulus of intact con-

crete is Gc, then the reduced shear modulus bGG of cracked

concrete can be expressed as

bGG ¼ lGc ð10Þ
l ¼ ð1� e=emaxÞ ð11Þ
where e is the strain normal to the crack direction and

emax is the strain at which the parameter l reduces to
zero (Fig. 5). Numerous analytical results have demon-

strated that the particular value chosen for l (between 0

and 1) does not appear to be critical but values greater

than zero are necessary to prevent numerical instabilities

[16,21]. In ABAQUS, emax is usually assumed to be a

very large value, i.e., l ¼ 1 (full shear retention). In this

investigation, the default values for tension stiffening

parameter e� ¼ 0:001 and for shear retention parameter
l ¼ 1 are used.

2.3. Fiber-reinforced plastics

For fiber-reinforced plastics (Fig. 6), each lamina can

be considered as an orthotropic layer in a plane stress
condition. It is well known that unidirectional fibrous

composites exhibit severe nonlinearity in their in-plane

shear stress–strain relation. In addition, deviation from

linearity is also observed with in-plane transverse load-

ing but the degree of nonlinearity is not comparable to
Fig. 5. Shear retention parameter.



Fig. 6. Material, element and structure coordinates of fiber reinforced

plastics.
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that in the in-plane shear [22]. Usually, this nonlinearity

associated with the transverse loading can be ignored

[23]. To model the nonlinear in-plane shear behavior,
the nonlinear strain–stress relation for a composite

lamina suggested by Hahn and Tsai [22] is adopted.

Values are given as follows:

e1
e2
c12

8<
:

9=
; ¼

1
E11

� m21
E22

0

� m12
E11

1
E22

0

0 0 1
G12

2
64

3
75 r1

r2

s12

8<
:

9=
;

þ S6666s212

0

0

s12

8<
:

9=
; ð12Þ

In this model only one constant S6666 is required to ac-

count for the in-plane shear nonlinearity. The value of

S6666 can be determined by a curve fit to various off-axis

tension test data [22]. Let us define Dfr0g ¼
Dfr1; r2; s12gT and Dfe0g ¼ Dfe1; e2; c12g

T
. Inverting and

differentiating Eq. (12), the incremental stress–strain
relations are established

Dfr0g ¼ ½Q0
1�Dfe0g ð13Þ

½Q0
1� ¼

E11

1�m12m21

m12E22

1�m12m21
0

m21E11

1�m12m21

E22

1�m12m21
0

0 0 1
1=G12þ3S6666s212

2
64

3
75 ð14Þ

Furthermore, it is assumed that the transverse shear

stresses always behave linearly and do not affect the

nonlinear behavior of any in-plane shear. If we define

Dfs0tg ¼ Dfs13; s23gT and Dfc0tg ¼ Dfc13; c23g
T
, the con-

stitutive equations for transverse shear stresses become

Dfs0tg ¼ ½Q0
2�Dfc0tg ð15Þ

½Q0
2� ¼

a1G13 0
0 a2G23

� �
ð16Þ

where a1 and a2 are the shear correction factors and are

taken to be 0.83 in this study.
Among existing failure criteria, the Tsai–Wu criterion

[28] has been extensively used in the literature and is

adopted in this analysis. Under plane stress conditions,

this failure criterion has the following form:

F1r1 þ F2r2 þ F11r2
1 þ 2F12r1r2 þ F22r2

2 þ F66s212 ¼ 1

ð17Þ

with

F1 ¼
1

X
þ 1

X
0 ; F2 ¼

1

Y
þ 1

Y
0 ; F11 ¼

�1

XX
0 ; F22 ¼

�1

Y Y
0 ;

F66 ¼
1

S
2

The X , Y and X
0
, Y

0
are the lamina longitudinal and

transverse strengths in tension and compression, re-
spectively, and S is the shear strength of the lamina.

Though the stress interaction term F12 in Eq. (17) is

difficult to be determined, it has been suggested that F12
can be set equal to zero for practical engineering ap-

plications [29]. Therefore, F12 ¼ 0 is used in this inves-

tigation.

During the numerical calculation, incremental load-

ing is applied to composite plates until failures in one or
more of individual plies are indicated according to Eq.

(17). Since the Tsai–Wu criterion does not distinguish

failure modes, the following two rules are used to de-

termine whether the ply failure is caused by resin frac-

ture or fiber breakage [30]:

(1) If a ply fails but the stress in the fiber direction re-

mains less than the uniaxial strength of the lamina
in the fiber direction, i.e. X

0
< r1 < X , the ply failure

is assumed to be resin induced. Consequently, the

laminate loses its capability to support transverse

and shear stresses, but remains to carry longitudinal

stress. In this case, the constitutive matrix of the

lamina becomes

½Q0
1� ¼

E11 0 0

0 0 0

0 0 0

2
4

3
5 ð18Þ

(2) If a ply fails with r1 exceeding the uniaxial strength

of the lamina, the ply failure is caused by the fiber

breakage and a total ply rupture is assumed. In this

case, the constitutive matrix of the lamina becomes

½Q0
1� ¼

0 0 0

0 0 0

0 0 0

2
4

3
5 ð19Þ

The material properties for FRP used in the analysis

are E11 ¼ 138 GPa, E22 ¼ 14:5 GPa, G12 ¼ G13 ¼
5:86 GPa, G23 ¼ 3:52 GPa, S6666 ¼ 7:32 (GPa)�3,

X ¼ 1450 MPa, X
0 ¼ �1450 MPa, Y ¼ 52 MPa,

Y
0 ¼ �206 MPa, S ¼ 93 MPa, m12 ¼ 0:21.
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During a finite element analysis, the constitutive

matrix of composite materials at the integration points

of shell elements must be calculated before the stiffness

matrices are assembled from the element level to the
structural level. For composite materials, the incre-

mental constitutive equations of a lamina in the element

coordinates (x; y; z) can be written as

Dfrg ¼ ½Q1�Dfeg ð20Þ
Dfstg ¼ ½Q2�Dfctg ð21Þ
where Dfrg ¼ Dfrx; ry ; sxygT, Dfstg ¼ Dfsxz; syzgT,
Dfeg ¼ Dfex; ey ; cxyg

T
, Dfctg ¼ Dfcxz, cyzg

T
, and

½Q1� ¼ ½T1�T½Q0
1�½T1� ð22Þ

½Q2� ¼ ½T2�T½Q0
2�½T2� ð23Þ

½T1� ¼
cos2 h sin2 h sin h cos h
sin2 h cos2 h � sin h cos h

�2 sin h cos h 2 sin h cos h cos2 h� sin2 h

2
4

3
5
ð24Þ

½T2� ¼
cos h sin h
� sin h cos h

� �
ð25Þ

The h is measured counterclockwise from the element

local x-axis to the material 1-axis (Fig. 6). Assume

Dfeog ¼ Dfexo; eyo; cxyog
T

are the incremental in-plane

strains at the midsurface of the shell section and Dfjg ¼
Dfjx; jy ; jxygT are its incremental curvatures. The in-

cremental in-plane strains at a distance z from the
midsurface of the shell section become

Dfeg ¼ Dfeog þ zDfjg ð26Þ
Let h be the total thickness of the composite shell
section, the incremental stress resultants, DfNg ¼
DfNx;Ny ;NxygT, DM ¼ DfMx;My ;MxygT and DfV g ¼
DfVx; Vyg, can be defined as

DfNg
DfMg
DfV g

8<
:

9=
; ¼

Z h=2

�h=2

Dfrg
zDfrg
Dfstg

8<
:

9=
;dz ð27Þ

Substituting Eqs. (20), (21) and (26) into the above ex-

pression, one can obtain the stiffness matrix for the fiber

composite laminate shell at the integration point as

DfNg
DfMg
DfV g

8<
:

9=
; ¼

Z h=2

�h=2

½Q1� z½Q1� ½0�
z½Q1� z2½Q1� ½0�
½0�T ½0�T ½Q2�

2
4

3
5 Dfeog

Dfjg
Dfctg

8<
:

9=
;dz

ð28Þ
where [0] is a 3 · 2 null matrix.
Fig. 7. Details of test beam.
3. Verification of the proposed material constitutive

models

The validity of the material models for steel, concrete

and FRP has been verified individually by testing
against experimental data [24,31] and is not duplicated

here. The validity of the these material models to sim-

ulate the composite behavior of reinforced concrete

beam strengthened by FRP is examined in this section
by comparing with the result of beam experiment per-

formed by Shahawy et al. [10]. The dimensions of the

test beam are given in Fig. 7. The beam is subjected to

four-point static load up to failure. The flexural rein-

forcement is composed of two 13 mm diameter steel bars

in tension zone and two 3 mm diameter steel bars in

compression zone. The yielding strength and the elastic

modulus of the reinforcing steel are ry ¼ 468:8 MPa and
Es ¼ 199:9 GPa. The compressive strength and the

Poisson�s ratio of concrete are f 0
c ¼ 41:37 MPa and

mc ¼ 0:2. Three FRP layers with their fiber directions

oriented in the axial direction of the beam are adhered

to the bottom face of the beam. Each FRP layer is

0.1702 mm in thickness with tensile strength X ¼ 2758

MPa and modulus E11 ¼ 141:3 GPa. To take the Tsai–

Wu criterion into account, the following parameters are
assumed: X

0 ¼ �2758 MPa, Y ¼ 52 MPa, Y
0 ¼ �206

MPa, S ¼ 93 MPa, E22 ¼ 14:5 GPa, G12 ¼ G13 ¼ 5:86
GPa, G23 ¼ 3:52 GPa, S6666 ¼ 7:32 (GPa)�3, m12 ¼ 0:21.
Since the FRP layers are subjected to uniaxial tension in

fiber direction only, these assumed parameters would

not affect the uniaxial tensile behavior of the FRP.

The beam has two planes of symmetry. One plane of

symmetry is the x–y plane cutting beam in half longi-
tudinally. The other plane of symmetry is the y–z plane
cutting beam in half transversely. Due to symmetry,

only 1/4 portion of the beam is analyzed and symmetric

boundary conditions are placed along the two symmet-

ric planes. In the finite element analysis, 8-node solid

elements (three degrees of freedom per node) are used to

model the reinforced concrete beams. The 1/4 beam

mesh has 78 solid elements in total (26 rows in x-direc-
tion, 3 rows in y-direction and 1 row in z-direction).
Because the fiber-reinforced plastics are relatively thin

compared to the concrete beam, they are modeled by the
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Fig. 9. Details of beams in numerical analysis.
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4-node shell elements (six degrees of freedom per node).

The FRP shell elements are attached to the bottom
surface of the concrete beam directly and perfect

bonding between FRP and the concrete is assumed.

Fig. 8 shows the moment versus deflection curves of

the beam at the midspan. It can be observed that the

correlation is quite good between the numerical result

and the experimental data. The predicted ultimate mo-

ment 60.9 kNm is in good agreement with the experi-

mental ultimate moment 60.4 kNm. The error is only
about 0.8%. Hence, the proposed material constitutive

models are proved to be able to simulate the composite

behavior of reinforced concrete beam strengthened by

FRP correctly.
4. Numerical analysis

4.1. Beam geometry and finite element model

In the numerical analyses, simply supported rein-

forced concrete beams with two types of lengths, i.e.,

short beam and long beam, are considered (Fig. 9).

While the deflection of the long beam is primary caused

by bending, the deflection of the short beam is due to
both bending and shear [32]. To study the influence of

reinforcement ratio, two types of reinforcement ratios,

i.e. low reinforcement ratio and high reinforcement

ratio, are considered. Two #4 steel bars ðq ¼ 0:0066Þ are
used for beams with low reinforcement ratio and two #8

steel bars ðq ¼ 0:0264Þ are used for beams with high

reinforcement ratio. Both high and low reinforcement

ratios satisfy the requirement of ACI code [25], i.e.
1:4=ry 6 q6 0:75qb, where qb ¼ 0:108 is the reinforce-

ment ratio for the balanced strain condition. These

beams are subjected to a uniformly distributed load p
(force per unit area) at the top surface of the beam and

the weights of the beams are neglected. The material

properties for steel, concrete and FRP discussed in

Section 2 are used in the numerical analyses.
These beams again have two planes of symmetry.
Therefore, only 1/4 portion of each beam is analyzed

and symmetric boundary conditions are placed along

the two symmetric planes. In the finite element analysis,

27-node solid elements (three degrees of freedom per

node) are used to model the reinforced concrete beams.

Based on the results of convergent studies [32], it was

decided to use 72 elements (18 rows in x-direction, 4
rows in y-direction and 1 row in z-direction) for long
beams and 36 elements (9 rows in x-direction, 4 rows in

y-direction and 1 row in z-direction) for short beams.

The FRP are modeled by the 8-node shell elements (six

degrees of freedom per node) and attached to the outer

surface of the concrete beams directly.
4.2. Ultimate analysis of reinforced concrete beams

without strengthening FRP

In order to provide a base to make a comparison or

show how the FRP changes the beam, ultimate analyses

of ordinary reinforced concrete beams without any FRP

are carried out. Fig. 10 shows the uniformly distributed

load p versus the midspan deflection of the beams. The

first character L or S in the figure represents long beam

or short beam, respectively. The following numbers 4 or
8 stand for beams with #4 or #8 steel bars. From the

figure one can observe that the stiffness and the ultimate

load of the long beams (L4 and L8) are much lower than

those of the short beams (S4 and S8). This is because the

long beams are weaker in bending than the short beams.

Generally, the reinforcement ratio does not influence the

ultimate load of beams significantly. For example, the

ultimate load pu of L8 beam (71.02 kPa) is higher than
that of L4 beam (68.53 kPa) by 3.63% and the ultimate

load of S8 beam (151.68 kPa) is higher than that of S4

beam (146.17 kPa) by 3.77%. For the long beams, the

beam with low reinforcement ratio (L4) has more ductile

behavior near the ultimate loading stage than that with

high reinforcement ratio (L8). However, for the short

beams, the reinforcement ratio does not influence their
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behaviors prior to the ultimate loading stage signifi-

cantly.

Fig. 11 shows the crack patterns of all four types of

beams under ultimate loads. The black dots in the figure

indicate that the integration points of the concrete ele-

ments have cracks. It can be seen that the long beams

fail by bending and numerous cracks take place in the

bottom of the central region of the beams. In addition,
the beam with low reinforcement ratio (L4) would have

more cracks than that with high reinforcement ratio
Fig. 11. Crack patterns of reinforced concrete beams without

strengthening FRP and under ultimate loads.
(L8). The short beams fail by shear and cracks take

place near the bottom of the support area. Unlike the

long beams, the crack patterns for S4 and S8 beams are

very similar. Hence, it can be confirmed again that the
reinforcement ratio does not influence the behaviors of

short beams prior to the ultimate loading stage signifi-

cantly.
4.3. Ultimate analysis of reinforced concrete beams

strengthened by FRP at the bottom

To increase the bending resistance of the reinforced

concrete beams, we consider attaching the FRP to the

bottom of the beams in this section. The thickness of

each FRP layer is 1 mm (0.04 in) and the laminate

lay-ups are [0]n, where n ¼ 1, 2, 3, 4. The fiber angle of

the lamina is measured counterclockwise (through

outward normal direction) from the longitudinal di-

rection of the beams. The reason that all the fibers are
placed in the axial direction of beam is because FRP

has the highest stiffness and strength in its fiber di-

rection.

Figs. 12 and 13 show the uniformly distributed load p
versus the midspan deflection of reinforced concrete

beams strengthened by FRP. Generally, the stiffnesses of

the beams increase when the numbers of FRP layers are
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strengthened by [0]n FRP at the bottom.
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increased. Fig. 14 shows the increasing of the ultimate

load pu versus the numbers of FRP layers at the bottom

of beams. For the long beams with low reinforcement

ratio (L4), pu seems to increase linearly with the number

of FRP layers (for n < 4). For the other three types of

beams, L8, S4 and S8, the use of one FRP layer would

have the most significant effect in increasing the pu.
When the numbers of FRP layers are increased, this
increase in pu seems to approach constant values (say
500% for L8 and S8 beams; 350% for S4 beams) and

becomes less significant than for the first FRP layer. It

can be seen that the curves of L8 and S8 in Fig. 14 are

almost identical and that the trends of the load–deflec-
tion curves in Figs. 12(b) and 13(b) are similar. This may

indicate that the behaviors of the beams with high re-

inforcement ratio and strengthened with FRP are not

influenced by the length of beam significantly. However,

for beams with low reinforcement ratio and strength-

ened with FRP, the beam lengths do affect their be-

haviors significantly, as shown by Figs. 12(a), 13(a) and

14.
Fig. 15 shows the crack patterns of reinforced con-

crete beams strengthened by [0]4 FRP at the bottom

and under ultimate loads. Comparing Fig. 15 with Fig.

11, one could see that after FRP is employed at the

bottom of the beams, these beams are failed in a

combination of bending and shear modes, i.e., severe

cracks occur at the bottom of the beam from the

central region through out the support area. Generally,
the beams with high reinforcement ratios and

strengthened with FRP would have more cracks at the

central region than those with low reinforcement ra-

tios. On the other hand, the beams with low rein-

forcement ratios and strengthened with FRP would

have more cracks at the support area than those with

high reinforcement ratios.
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4.4. Ultimate analysis of reinforced concrete beams

strengthened by FRP on both sides

To increase the shear resistance of the reinforced
concrete beams, we consider attaching the FRP to both

sides of the beams in this session. The thickness of each

FRP layer is the same as before and the laminate lay-ups

are ½�h�n, where n ¼ 1, 2, 3. The fiber angle of the

lamina is measured counterclockwise from the midsur-

face of the beams.

Figs. 16 and 17 show the typical load–deflection

curves of long beams (L4 and L8) and short beams (S4
and S8) strengthened by ½�h�3 FRP on both sides, re-

spectively. From these figures one can observe that when

h angle is close to 0�, the beams have the strongest

stiffnesses. When h angle is close to 90�, the beams are

prone to have the weakest stiffnesses.

Figs. 18 and 19 show the increase of the ultimate load

pu versus fiber angle h for beams with ½�h�n FRP on both

sides. Generally, the ultimate load pu increases with the
increasing of FRP layer numbers. For long beams with

low reinforcement ratio as shown in Fig. 18(a), when

n ¼ 1 and 2, the increasing in pu seems to be less inde-

pendent on the fiber angle h. However, when n ¼ 3, the

fiber angle does have significant influence on the ulti-

mate load pu and the optimal angle seems to be around
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Fig. 16. Load–deflection curves of long reinforced concrete beams

strengthened by ½�h�3 FRP on both sides.

Fig. 17. Load–deflection curves of short reinforced concrete beams

strengthened by ½�h�3 FRP on both sides.
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Fig. 18. Increase of pu versus h for long reinforced concrete beams

strengthened by ½�h�n FRP on both sides.



Fig. 20. Crack patterns of reinforced concrete beams strengthened by

½�45�3 FRP on both sides and under ultimate loads.
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Fig. 19. Increase of pu versus h for short reinforced concrete beams

strengthened by ½�h�n FRP on both sides.
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60�. For long beams with high reinforcement ratio as

shown in Fig. 18(b), the increase in pu is less dependent

on the fiber angle h only for the case with n ¼ 1. For

n ¼ 2 and 3, the ultimate loads are highly dependent on

the fiber angles. For short beams with n ¼ 2 and 3 as

shown in Fig. 19(a) and (b), the ultimate loads are also

highly dependent on the fiber angles. For short beams

with n ¼ 1, the ultimate loads are less dependent on the
fiber angles when the fiber angles are large, say h > 15�
for short beams with low reinforcement ratio (S4) and

h > 30� for short beams with high reinforcement ratio

(S8). No matter of the reinforcement ratio and the FRP

layer numbers, the optimal fiber angle of short beams

seems to close to 0�.
Comparing Figs. 18 and 19 with Fig. 14, one can

observe that with the same numbers of FRP layers, the
ultimate strengths of beams strengthened by FRP on

both sides of beams are much less than those strength-

ened by FRP at the bottom of beams. This indicates that

to increase the bending resistance of the reinforced

concrete beams is more crucial than to increase the shear

resistance of the beams.

Fig. 20 shows the crack patterns of reinforced con-

crete beams strengthened by ½�45�3 FRP on both sides
and under ultimate loads. Comparing Fig. 20 with Fig.

11, one can see that after FRP is employed on both sides
of the beams, the long beams develop more cracks from
central region toward the support area. For short

beams, they start to develop cracks at the central-bot-

tom region of the beams. Comparing Fig. 20 with Fig.

15, it can be seen that the beams with FRP on both sides

have less cracks under the ultimate loads that those with

FRP at the bottom. This is because that the ultimate

strengths of the former beams are less than the latter

ones.
5. Conclusions

In this paper, nonlinear finite element analyses of

rectangular reinforced concrete beams strengthened by

FRP are performed. Based on the numerical results, the

following conclusions may be drawn:

(1) The behaviors of the beams with high reinforcement

ratio and strengthened with FRP at the bottom are

not influenced by the length of beam significantly.

(2) For beams with low reinforcement ratio and

strengthened with FRP at the bottom, the beam

lengths do affect their behaviors significantly.

(3) The beams with high reinforcement ratios and
strengthened with FRP at the bottom would have

more cracks at the central region than those with
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low reinforcement ratios. On the other hand, the

beams with low reinforcement ratios and strength-

ened with FRP at the bottom would have more

cracks at the support area than those with high rein-
forcement ratios.

(4) For long beams strengthened by ½�h�n FRP on both

sides, when the FRP layer numbers is small, the in-

crease in the ultimate load pu seems to be less depen-

dent on the fiber angle h.
(5) For short beams strengthened by ½�h�n FRP on both

sides, the optimal fiber angle seems to be 0� no mat-

ter of the reinforcement ratio and the numbers of
FRP layers.

(6) With the same FRP layer numbers, the ultimate

strengths and the numbers of cracks of beams

strengthened by FRP on both sides are much less

than those strengthened by FRP at the bottom.

Thus, to increase the bending resistance of the rein-

forced concrete beams is more crucial than to in-

crease the transverse shear resistance of the beams.
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