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ABSTRACT: A numerical constitutive model for a single layer of fiber-reinforced
composite laminates, including nonlinear stress–strain relations, mixed failure
criterion and post failure response, is used to predict the ultimate strengths of the
composite laminates under biaxial tensile loads. The nonlinear constitutive law uses a
variable shear parameter to model the nonlinear behavior of the in-plane shear. The
onset of failure for individual lamina is determined by a mixed failure criterion
composed of the Tsai-Wu and the maximum stress criteria. After the initial damage
occurs, the response of the lamina is described by brittle or degrading modes up to
the collapse of the entire laminate. The constitutive model is tested against
experimental data and satisfactory results are obtained. In addition, parametric
studies for composite laminates with different laminate layups and under various
biaxial tensile load ratios are presented.

KEY WORDS: nonlinear constitutive law, nonlinear shear parameter, mixed failure
criterion, post failure response, biaxial tensile load, laminate layups.

INTRODUCTION

T
HE BEHAVIOR OF fiber-reinforced plastic materials is complicated by the fact that it is
not only anisotropic, but, on the macro scale, is also inhomogeneous. These properties
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cause a variety of failure mechanisms associated with fiber-reinforced composite materials.
For example, when a composite material is subjected to loading, the matrix can develop
cracks, plies may delaminate, or fibers can debond from the matrix and fail. This damage
leads to a localized or global failure of the composite material involving one or more of
many failure modes possible. The study of the failure modes and damage propagation is
an integral part of the characterization of composite materials.
Materials in practical structures are usually subjected to biaxial or triaxial stresses.

These structures include pressure vessels, pipes, drive shafts and rocket motors, etc. As the
use of composite materials under such complex loading conditions has increased, so has
the need for reliable design criteria which can be easily manipulated by the design engineer
with reasonable accuracy.
Filament wound composite tubes have been the subject of numerous experimental

investigations. Biaxial testing of tubes has evolved from the three basic tests, i.e., axial
load, internal pressure and pressure vessel type loading where the ratio of hoop stress to
axial stress is 2 : 1. Due to the development of biaxial testing systems, it is possible to
conduct biaxial tests at any ratio of internal pressure to axial load [1–6]. In addition to the
experimental work, several theoretical predictions on the failure of composite laminates
under biaxial stress have been presented [7–16].
The objective of this investigation is to test the constitutive model proposed by the

authors [17] against experimental data of composite tubes [3] to verify the accuracy of
this model in modeling the behaviors of composite laminates subjected to biaxial
loads. Then parametric studies for composite laminates with different laminate layups
(including symmetric angle-ply and symmetric cross-ply laminates) and under various
biaxial tensile load ratios are carried out. Finally, the influence of those parameters
(laminate layups and biaxial tensile load ratios) on the stress–strain curve, failure stress
and the failure envelope of composite laminates under various biaxial loads are studied
and discussed.

NONLINEAR ANALYSIS MODEL

Idealized Stress–Strain Curve and Post Damage Model

For a single lamina under loading, the stress–strain curves of the proposed nonlinear
analysis model are shown in Figure 1. The model comprises two basic regions in fiber and
matrix; namely, the elastic and post-damage regions. And, it comprises two basic regions
in in-plane shear; namely, the nonlinear and post-damage regions. For the present model,
it is assumed that the material response can be adequately represented by linear stress–
strain curves in the principal material directions, 1-direction (fiber direction) and
2-direction (transverse direction) of the lamina, and by a nonlinear stress–strain curve for
in-plane shear in 1-2 direction. During the nonlinear stage in shear direction, the nonlinear
shear modulus, G12n, is dependent on the shear strain, �12. In the pre-damage regions, the
elastic modulus is denoted by Eii (i ¼ 1, 2) in the principal material directions. In the post-
damage region, the elastic stiffnesses are dropped to zero (brittle modes) in 1-direction and
1-2 direction. However, the elastic stiffness is assumed to have a negative modulus E22f
(degrading mode) in 2-direction. This means that the damaged lamina unloads in the
transverse direction through a negative tangent modulus until no load remains in the
lamina.
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Nonlinear Constitutive Model of a Lamina

For fiber-composite laminate materials, each lamina can be considered as an ortho-
tropic layer in a plane stress condition. Taking into account the elastic-plastic behaviors
in the 1-direction and 2-direction and the nonlinear behavior on the 1-2 plane within

Figure 1. Stress–strain curves of the proposed nonlinear failure model: (a) for 1-direction, (b) for 2-direction,
(c) for 1-2 direction.
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the lamina, the stress–strain relations for an orthotropic lamina in the material coordinates
(1, 2) can be written as [18]
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where "1, "2, and �12 represent the strains in 1-direction, 2-direction and 1-2 plane,
respectively. �1, �2 and �12 denote the stresses in 1-direction, 2-direction and 1-2 plane,
respectively. The terms �12 and �21 are the Poisson’s ratios. The terms E11 and E22 are the
elastic moduli in 1-direction and 2-direction. G12 is the shear modulus and S6666 is a shear
parameter to account for the in-plane shear nonlinearity. The S6666 is a function of shear
strain and can be determined by fitting the stress–strain curve of pure shear test data.
The incremental stress–strain relations for a nonlinear orthotropic lamina can be given

as follows:
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The terms �1 and �2 are the shear correction factors and are taken to be 0.83 in this study
[19]. It is assumed that the transverse shear stresses always behave linearly and do not
affect the nonlinear in-plane behavior of individual lamina.

FAILURE CRITERION AND DEGRADATION OF STIFFNESS

Mixed Failure Criteria

The Tsai-Wu failure criterion has a general nature because this failure criterion contains
almost all other polynomial theories as special cases. But in some cases, the predictions of
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the Tsai-Wu criterion are unreasonable due to the predicted failure stress in fiber
exceeding the strength of material. In order to eliminate this unreasonable phenomenon,
the limitation of maximum stress of fiber is added into the Tsai-Wu failure criterion to
obtain a mixed failure criterion [17]. Under the plane stress condition, the mixed failure
criterion is written in the following form:

F1�1 þ F2�2 þ F11�
2
1 þ 2F12�1�2 þ F22�

2
2 þ F66�

2
12 ¼ 1 ð6Þ

and
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The Xut, Yut and Xuc, Yuc are the lamina longitudinal and transverse ultimate strengths in
tension and compression, respectively, and S is the shear strength of the lamina. Though
the stress interaction term F12 in Equation (6) is difficult to be determined, it has been
suggested by Narayanaswami and Adelman [20] that F12 can be set equal to zero for
practical engineering applications. Therefore, F12 ¼ 0 is used in this investigation.

Property Degradation Models

Material degradation within the damaged area was evaluated based on the mode of
failure predicted by the failure criteria. Therefore, the residual stiffnesses of composites
greatly depend on the mode of failure in each layer. The property degradation models for
each layer can be separated into three idealized types of failure modes named as brittle,
ductile and degrading [21,22]. For the brittle mode, the material is assumed to lose its
entire stiffness and strength in the dominant stress direction, whereas for the ductile mode
the material retains its strength but loses all of its stiffness in the failure direction. And, for
the degrading mode the material is assumed to lose its stiffness and strength gradually in
the failure direction. In this investigation, the post failure modes are idealized as the brittle
behavior for �1 and �12 and as the degrading behavior for �2 [17].
In the mixed failure theory, since this failure criterion can not distinguish failure modes,

the following three rules are used to determine whether the ply failure is caused by matrix
fracture, shear failure, or fiber breakage or buckling [23]:
(1) If a layer fails in the condition of Xuc < �1 < Xut and �S < �12 < S, the failure is

assumed to be matrix induced. Consequently, the degradation of transverse stiffness
occurs. Due to the interlock action with the neighboring plies, the damaged layer
gradually loses its capability to support transverse stress, until the fracture in shear or the
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breakage or buckling in fiber on the same layer. But, the lamina remains to sustain the
longitudinal and shear stresses. In this case, the constitutive matrix of the lamina becomes

D
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2
64

3
75 ð8Þ

where E22f is a negative tangent modulus in transverse direction of the damaged layer, and

G12n ¼
1

1=G12 þ 3S6666�212
:

The term G12n represents the nonlinear shear modulus.
(2) If the ply fails in the condition of Xuc < �1 < Xut, and �12 � S or �12 � �S, the

failure is assumed to be shear induced. Consequently, the damaged lamina loses its
capability to support transverse and shear stresses, but remains to carry longitudinal
stress. In this case, the constitutive matrix of the lamina becomes

½D0
1
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E11 0 0
0 0 0
0 0 0

2
4

3
5 ð9Þ

(3) If the ply fails with �1 � Xut or �1 � Xuc, the ply failure is caused by the fiber
breakage or buckling and a total ply rupture is assumed. Thus, the constitutive matrix of
the lamina becomes

½D0
1
 ¼

0 0 0

0 0 0

0 0 0

2
4

3
5 ð10Þ

LAMINATE GOVERNING EQUATIONS

The foregoing nonlinear failure model for fiber-reinforced composite laminates can be
combined with classical lamination theory to form the following incremental laminate
force–strain relations:

�fNg ¼
Xm
i¼1

½D
ihi�f"g ð11Þ

where �fNg ¼ �fNx,Ny,Nxyg
T and �f"g represent the vectors of the resultant membrane

forces and the incremental strains in the overall laminate coordinate system ðx, yÞ,
respectively. The term hi denotes the thickness of the ith layer, m is the number of layers.
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The stiffness matrix ½D
i stands for elastic, elastoplastic and post-failure constitutive
matrices, whichever is applicable, for the ith layer.

NUMERICAL ANALYSIS

General Description

The aforementioned nonlinear constitutive model combined with mixed failure criterion
and post failure mode for composite materials are implemented into a FORTRAN
subroutine and linked to the ABAQUS finite element program [24]. The analyzed
laminates are simply supported around all edges of the plate as shown in Figure 2. The ply
orientation of the laminate can be selected arbitrarily, but it must be symmetric with
respect to the middle plane of the plate. The laminate is subjected to biaxial tensile load.
The aspect ratios of all laminates analyzed are L=W ¼ 1 with t=W < 1=20, where L, W
and t represent the length, width and thickness of the laminate, respectively. The laminae
are assumed to be perfectly bounded and no slipping occurs within the laminate. Since the
stress field is uniform throughout the composite, only one quadrangular shell element with
eight nodes is used to simulate the laminate in the numerical analysis.
In ABAQUS program, the local stresses and strains of the shell element in each lamina

within the laminate can be automatically transformed to global coordinates. Basically,
stresses and strains are calculated at each incremental step, and evaluated by the failure
criteria to determine the occurrence of failure and the mode of failure. Mechanical
properties in the damage area are reduced appropriately, according to the property
degradation models. Stresses and strains will then be recalculated to determine any
additional damage as a result of stress redistribution at the same load. This procedure will
continue until no additional damage is found, and the next increment is then pursued.

Figure 2. Geometry and biaxial tensile load on the composite laminate.
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The final collapse load is determined when the composite plates cannot sustain any
additional load.
The material used in the numerical analysis is E-Glass/epoxy composites. Its material

properties and strengths are [25]:

1. Material properties:

E11¼ 45.6GPa, E22¼ 16.2GPa, E22f¼� 4.02GPa, G12¼ 5.83GPa, �12¼ 0.278

S6666 ¼

0GPa�3, if 0 � �12 � 0:006

9723:85ð�12 � 0:006ÞGPa
�3, if 0:006 � �12 � 0:007

�3:56942þ 1899:03882�12GPa
�3, if 0:007 � �12 � 0:04

8>><
>>:

9>>=
>>;

2. Ultimate strengths:

Xut¼ 1280MPa, Xuc¼� 800MPa, Yut¼ 40MPa, Yuc¼� 145MPa, S¼ 72MPa.

The variable shear parameter, S6666, is obtained by curve fitting from the pure shear test
data [25], as shown in Figure 3.

Figure 3. Nonlinear shear parameter S6666 vs. shear strains �12 for E-glass/MY750/HY917/DY063 epoxy
lamina.
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Validation of the Proposed Nonlinear Analysis Model

The proposed nonlinear constitutive model has been shown to be a reasonable and
accurate approach in the nonlinear failure analysis of fiber-reinforced composite lami-
nated materials subjected to uniaxial loading [17]. To verify this constitutive model also
suitable for the failure analysis on fiber-reinforced composite laminated materials
subjected to biaxial loading, the predictions obtained by the proposed model are
compared with experimental data [3] and with the predictions obtained by other analysis
models. Two analysis models, the stress-based Grant-Sanders method used by Edge [9]
and the progressive failure model developed by Liu and Tsai [14], are selected to
compare with the proposed analysis model. The stress-based Grant-Sanders method is
based on a ply-by-ply analysis with discrete failure criteria; the only interactions
considered being shear-tension for matrix failure and shear-compression for fiber failure.
The progressive failure model is also based on a ply-by-ply analysis but using the
degrading factors to modify the stiffness and strength of fiber and matrix in damaged
zone, and uses the Tsai-Wu failure criterion to determine the failure onset of individual
lamina within the laminate. Figure 4 illustrates the failure envelope for [þ 55/�55]S

Figure 4. Failure envelopes for [þ 55/�55]S laminate under biaxial tensile loads.
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E-glass/epoxy laminates under various biaxial tensile loads. It shows the predictions
obtained by the proposed constitutive model have a better agreement with the
experimental data [3] than those predicted by Liu and Tsai [14] and Edge [9]. Thus,
the proposed nonlinear analysis model is reasonably accurate in predicting the failure
behavior of fiber-reinforced composite laminates under biaxial loading.

Parametric Investigation

Two major parameters, biaxial tensile stress ratio and laminate layup, are concerned in
this study. The biaxial stress ratio is defined as the ratio of axial stress to transverse stress
of laminate, i.e., SR ¼ �x=�y. The laminate layups include two types of laminate, i.e.,
symmetric angle-ply laminate ½

S and symmetric cross-ply laminate ½
=ð
 � 90Þ
S. The
influences of these two parameters on the behavior of composite laminates under biaxial
tensile loading are investigated as follows.

[ 
]S LAMINATES
In this section, first, the influence of biaxial stress ratio on the stress–strain curve of a

given ½

S laminate is investigated. The ½

S laminates include ½0=0
S, ½þ15=�15
S,
½þ30=�30
S, and ½þ45=�45
S layups. Then, the stress–strain behaviors of various ½

S
laminates under a special biaxial stress ratio, SR ¼ 1=1, are investigated. Finally, the
influence of laminate layup on the failure stress and the failure envelope of composite
laminates under biaxial stress are studied.
Figures 5–8 illustrate the stress–strain curves for various ½

S laminates under various

biaxial tensile loads. For ½0=0
S laminate subjected to uniaxial tensile load (SR¼ 1/0), the
stress–strain curve (Figure 5) is linear due to the deformation of laminate dominated by
fiber and the failure dominated by fiber breakage. If a small transverse tensile load is
added into the laminate to generate a biaxial stress state, say �y ¼ 0:04�x (SR¼ 1/0.04), it
changes the failure mode from fiber breakage to matrix tensile cracking failure and
decreases the axial failure stress of the laminate. This means that the failure mode of the
laminate is changed from fiber failure dominant to matrix cracking failure dominant. As
the transverse stresses increase, the axial failure stresses of laminate decrease rapidly.
Under these load conditions, the �x � "x curves remain linear and keep the same slope as
the original curve without any transverse load acting on it (SR¼ 1/0). However, the
�x � "y curves change their slopes gradually due to the fact that the tensile transverse
strains increase with the transverse tensile loading. As the biaxial stress ratio decreases
from SR¼ 1/0 down to SR¼ 1/1, the failure of laminate is fully dominated by matrix.
It is noted that no initial failure occurs for ½0=0
S laminate.
For ½þ15=�15
S laminate (Figure 6), �x � "x curve is nearly linear under uniaxial

tensile load (SR¼ 1/0), but the failure mode is coupled by fiber failure and shear failure.
If a small transverse tensile load is added into the laminate to generate a biaxial
stress state, say �y ¼ 0:04�x, it changes the failure mode from the coupled fiber
and shear failures to shear failure only and the axial failure stress of the laminate is
decreased. As the transverse stress increases, the axial failure stress of laminate decreases
rapidly and the failure mode of laminate changes to matrix cracking failure. When
the biaxial stress ratio decreases from SR¼ 1/0 down to SR¼ 1/0.1, the failure of
laminate is fully dominated by matrix. Again no initial failure occurs for ½þ15=� 15
S
laminate.
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Figure 6. Stress–strain curves for [þ15/�15]S laminate under various biaxial tensile loads.

Figure 5. Stress–strain curves for [0/0]S laminate under various biaxial tensile loads.
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For ½þ30=�30
S laminate (Figure 7), the stress–strain curve of the laminate under
uniaxial tensile load (SR¼ 1/0) is nonlinear due to the behavior of laminate being
dominated by shear deformation and the failure mode of the laminate is shear failure. If a
small transverse tensile load is added into the laminate to generate a biaxial stress state,
say �y ¼ 0:04�x (SR¼ 1/0.04), it enhances the nonlinear shear behavior of the laminate
and increases the axial failure stress of the laminate. This phenomenon is valid up to the
case �y ¼ 0:1�x (SR¼ 1/0.1). As �y > 0:1�x, the failure mode of laminate gradually
changes from the shear failure dominant to matrix cracking failure dominant, and the
axial failure stress decreases rapidly. Under the biaxial load with SR¼ 1/1, the transverse
strain "y changes from negative to positive and is greater than the axial strain, "x, due to
the weakness in transverse direction of laminate. Hence, the laminate fails with matrix
cracking at a very lower stress. Under SR ¼ 1=1, the laminate initiates matrix cracking
(initial failure) on 30 and �30� plies simultaneously, and finally has matrix failure (final
failure) on both type plies at the same time.
For ½þ45=�45
S laminate (Figure 8), the stress–strain curve of the laminate under

uniaxial tensile load (SR¼ 1/0) is nonlinear due to the behavior of laminate dominated by
shear deformation. If a transverse tensile load is added into the laminate to generate a
biaxial stress state, say �y ¼ 0:5�x (SR¼ 1/0.5), it decreases the nonlinear response of the
laminate and increases the axial failure stress of the laminate. If the biaxial stress ratio
increases to SR¼ 1/1, the stress–strain curves, �x–"x and �x–"y curves, change into the
same bilinear form due to the behavior of laminate dominated by fiber deformation and
having the same stress–strain response in x and y directions. For this type of laminate, the

Figure 7. Stress–strain curves for [þ30/� 30]S laminate under various biaxial tensile loads.
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initial matrix cracking occurs on 45 and �45� plies simultaneously (initial failure), and
finally the fiber breaks on both plies at the same time (final failure). The axial final failure
stress increases as SR changes from 1/0 to 1/1, but the initial failure stresses are nearly the
same for different biaxial stress ratios. The initial failure mode is matrix cracking, but the
final failure mode is fiber failure for all the biaxial stress ratios.
Figure 9 shows the stress–strain curves for various ½

S laminates under biaxial tensile

load with SR¼ 1/1. In the figure, only the curves with 30� � 
� 60� are plotted. For 

beyond this region, the curves are either too close to the curve of ½30
S layup or too close
to the curve of ½60
S layup to distinguish the difference. Due to symmetry, the �x–"y
curves of ½30
S, ½35
S and ½40
S laminates are the same as the �x–"x curves of ½60
S,
½55
S and ½50
S laminates and the �x–"y curves of ½60
S, ½55
S and ½50
S laminates
are the same as the �x–"x curves of ½30
S, ½35
S and ½40
S laminates. For ½30
S,
½35
S and ½40
S laminates, the transverse strains increase more rapidly than the axial
strains do as the stress increases. Due to the effect of the Poisson’s ratio, the axial strain
starts to decrease near the ultimate failure load. The axial failure stress of ½

S laminate
increases as 
 increases from 0 to 45� and decreases as 
 increases from 45 to 90�. The axial
failure stress of ½45
S laminate is the largest among various ½

S laminates.
Figure 10 illustrates the axial failure stresses, �xf , for various ½

S laminates under

different biaxial tensile loads. It shows the axial failure stress of ½

S laminate changes
with 
 for certain biaxial stress ratio. There exists an optimum 
 at which the maximum
axial failure stress reaches. For example, the optimum 
 for SR ¼ 1=0, SR ¼ 1=1 and
SR ¼ 1=2 are 0, 45 and 55�, respectively. Generally, the optimal angle 
 increases with the

Figure 8. Stress–strain curves for [ þ 45/ �45]S laminate under various biaxial tensile loads.
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Figure 9. Stress–strain curves for various [þ 
/�
 ]S laminates under biaxial tensile load with SR = 1/1.

Figure 10. Failure stresses �xf for various [ þ 
/�
 ]S laminates under various biaxial tensile loads.
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decreasing of the biaxial stress ratio and the correspondent maximum axial failure stress
decreases with the decreasing of the biaxial stress ratio. Figure 11 demonstrates the failure
envelopes for various ½

S laminates under different biaxial tensile loads. It is not
surprising to find that the failure envelope of the ½

S laminate is symmetric to that of the
½ð90� 
Þ
S laminate with the diagonal of the figure being the symmetric line.

[
/(
� 90)]S LAMINATES
In this section, the influence of biaxial stress ratio on the stress–strain behavior of a

given ½
=ð
 � 90Þ
S laminate is investigated. The laminates include ½0=90
S, ½þ15=�75
S,
½þ30=�60
S and ½þ45=�45
S layups. Then, the influence of laminate layup on the stress–
strain behaviors of various ½
=ð
 � 90Þ
S laminates under different biaxial stress ratios, i.e.,
SR¼ 1/0, 1/0.5 and 1/1, is studied. Finally, the influence of laminate layup on the failure
stress and the failure envelope of various ½
=ð
 � 90Þ
S composite laminates under different
biaxial stress is investigated.
Figures 12–14 and 8 illustrate the stress–strain curves for various ½
=ð
 � 90Þ
S

laminates under different biaxial tensile loads. For ½0=90
S laminate (Figure 12), the axial
strains are positive for all loading conditions. The transverse strains are also positive
except for SR ¼ 1=0, which is due to the effect of the Poisson’s ratio. Under the biaxial
loading with SR changing from 1/0 to 1/0.5, the matrix cracking initiates on 90� ply (initial
failure). Then matrix cracking occurs on 0� ply (intermediate failure). Finally fiber breaks
on 0� ply (final failure). Under the equal biaxial loading, SR ¼ 1=1, the matrix cracking
initiates on 0 and 90� plies at the same time (initial failure) and finally fiber breaks on

Figure 11. Failure envelopes for various [þ
/�
]S laminates under various biaxial tensile loads.
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0 and 90� plies simultaneously (final failure). It appears that the initial failure stresses
and the final failure stresses for all the loading conditions are the same. This is because the
initial failure and final failure all occur in the 0 or 90� directions. The intermediate failure
stress decreases as SR changes from 1/0 to 1/1 and no intermediate failure occurs as
SR ¼ 1=1.
For ½þ15=�75
S laminate (Figure 13), the trends of the stress–strain curves are similar

to those of ½0=90
S laminate. The failure propagation is similar to that of ½0=90
S laminate
with failures on 0 and 90� plies being converted to 15 and �75� plies, respectively. These
curves have similar initial failure stresses with SR changing from 1/0 to 1/1. The final
failure stress somewhat increases as SR changes from 1/0 to 1/1, due to the lateral tensile
stress decreasing the axial strain to enhance the axial failure stress. The intermediate
failure stress decreases as SR changes from 1/0 to 1/1, due to the incremental transverse
stress causing the matrix cracking on 15� ply.
For ½þ30=�60
S laminate (Figure 14), the �x–"x and �x–"y curves are nonlinear under

SR ¼ 1=0, due to the laminate response dominated by shear deformation. The matrix-
cracking initiates on �60� ply (initial failure). Then matrix cracking occurs on 30� ply
(intermediate failure). Finally shear failure takes place simultaneously on 30 and�60� plies.
For the biaxial loading with SR ¼ 1=0:5, the initial matrix cracking occurs on �60� ply,
followed by matrix cracking on 30� ply, and followed by shear failure on 30� ply. For the

Figure 12. Stress–strain curves for [0/90]S laminate under various biaxial tensile loads with SR = 1/0, 1/0.5
and 1/1.
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Figure 14. Stress–strain curves for [þ30/�60]S laminate under various biaxial tensile loads with SR = 1/0,
1/0.5 and 1/1.

Figure 13. Stress–strain curves for [þ15/�75]S laminate under various biaxial tensile loads with SR = 1/0,
1/0.5 and 1/1.
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biaxial loading with SR¼ 1/1, the matrix cracking initiates on both 30 and �60� plies
(initial failure). Finally, the fibers break on both 30 and �60� plies (final failure). It
appears that the initial failure stresses for all the loading conditions are very similar.
However, the final failure stress increases rapidly as SR changes from 1/0 to 1/1.
Figures 15–17 demonstrate the stress–strain curves for various ½
=ð
 � 90Þ
S laminates

under the certain biaxial tensile load. For uniaxial loading SR ¼ 1=0 (Figure 15), the
laminate response varies from fiber deformation dominated on ½0=90
S layup to shear
deformation dominated on ½þ45=�45
S layup. The laminates, except for ½þ45=� 45
S
laminate, experience initial matrix cracking on (
� 90�) ply, then followed by matrix
cracking on 
 ply, and finally followed by fiber breakage or shear failure on 
 ply. The
initial failure stresses are very close for various ½
=ð
 � 90Þ
S laminates, but the
intermediate and final failure stresses decrease rapidly as 
 increases from 0 to 45�.
For the biaxial loading with SR ¼ 1=0:5 (Figure 16), the axial and transverse strains

are positive, except for ½þ45=�45
S laminate whose transverse strain changes from
positive to negative. The laminate responses are dominated by fiber deformation on
½0=90
S and ½þ15=�75
S layups, but dominated by shear deformation on ½þ30=�60
S and
½þ45=�45
S layups. The failure propagation is similar to the loading case for SR ¼ 1=0.
The initial and intermediate failure stresses are very close. That is, the occurrences of
initial matrix cracking on (
� 90�) ply and the following matrix cracking on 
 ply are very
close. The final failure stress decreases as 
 increases. As for the equal biaxial loading with
SR ¼ 1=1 (Figure 17), the axial and transverse strains are positive and all overlapped into
the same curve for various ½
=ð
 � 90Þ
S laminates. The behavior of this type of laminates
is similar to the behavior of isotropic material under equal biaxial loading. So, it can be

Figure 15. Stress–strain curves for various [
/(
�90)]S laminates under biaxial tensile load with SR = 1/0.
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Figure 16. Stress–strain curves for various [
/(
 � 90)]S laminates under biaxial tensile load with SR = 1/0.5.

Figure 17. Stress–strain curves for various [
/(
� 90)]S laminates under equal biaxial tensile load (SR = 1/1).
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referred to the conditional quasi-isotropic laminate. The laminates only experience initial
matrix cracking on (
�90�) ply and finally fiber breakage on 
 ply during the loading
process.
Figure 18 illustrates the axial failure stresses for various ½
=ð
 � 90Þ
S laminates under

different biaxial tensile loads. The �xf – 
 curves are symmetric to the vertical line at

¼ 45�. The axial failure stress of ½
=ð
 � 90Þ
S laminates for all the biaxial loading
conditions generally decreases as 
 increases from 0 to 45�. The only exception is the case
with SR ¼ 1=1, where the axial failure stress is a constant and independent of 
. Under
the same 
 angle, the axial failure stress increases with the decreasing of SR value when
1/1� SR� 1/0. However, when SR� 1/1, the axial failure stress decreases with the
decreasing of SR value. Comparing Figure 18 with Figure 10, we can see that the
characteristic behaviors of ½
=ð
 � 90Þ
S laminate is greatly different from those of ½

S
laminate.
Figure 19 illustrates the failure envelopes for various ½
=ð
 � 90Þ
S laminates under

different biaxial tensile loads. All the failure envelopes of the ½
=ð
 � 90Þ
S laminates are
symmetric to the diagonal line of the figure. The shape of the failure envelope shrinks as 

increases from 0 to 45�. However, all curves pass through the same point on the diagonal
line of the figure, where SR¼ 1/1. It appears that the area of failure envelope for ½0=90
S
layup is the largest among various ½
=ð
 � 90Þ
S laminates under different biaxial loading.
This means that the ½0=90
S laminate can sustain the general biaxial loading more safely
than the other ½
=ð
 � 90Þ
S laminates. Finally, the characteristic shapes of failure

Figure 18. Failure stresses �xf for various [
/(
�90)]S laminates under different biaxial tensile loads.
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envelopes for ½
=ð
 � 90Þ
S laminates are also very different from those for ½

S laminates
as shown in Figure 11.

6. CONCLUSIONS

Based on the numerical investigation on the failure of composite laminates for various
layups and under different biaxial loadings, the following conclusions can be drawn:

1. The proposed nonlinear failure analysis model can adequately predict the behavior of
fiber-reinforced composite laminates under biaxial tensile loading The advantage of
this analysis model includes its accuracy, ease of use, flexibility, scalar representation,
and so on.

2. There are two major parameters, biaxial stress ratio and layup, which affect the
behavior of the fiber-reinforced composite laminates under biaxial tensile stress. The
½

S laminates have extremely distinct response from the ½
=ð
 � 90Þ
S laminates under
biaxial tensile loads, including the stress–strain behavior, failure stress-layup relation,
and feature of failure envelope. There exists a symmetric condition on failure stress-
layup relation with respect to 
¼ 45� for ½
=ð
 � 90Þ
S laminates, but it does not exist
for ½

S laminates.

3. The biaxial stress ratio affects the behavior of composite laminate not only on the
failure stress but also on the failure mode. For ½

S laminates, the maximum failure
stress occurs at an optimum 
 under a given biaxial stress ratio. The optimum 


Figure 19. Failure envelopes for various [
/(
�90)]S laminates under different biaxial tensile loads.
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increases as the biaxial stress ratio, SR, decreases. The change of the biaxial stress ratio
would change the failure mode of a laminate from one mode to another mode. For
½
=ð
 � 90Þ
S laminates, the maximum failure stress occurs on ½0=90
S and ½90=0
S
layups under various biaxial stresses. However, under a special biaxial stress, the equal
biaxial stress, the ½
=ð
 � 90Þ
S laminates would exhibit the same failure stress in spite of
the 
 angle. In general, the failure stress increases as the final failure mode of composite
laminate changes from matrix cracking or shear failure dominant modes toward fiber
failure dominant mode.
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