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ABSTRACT: A nonlinear constitutive model together with a mixed failure
criterion for a single lamina is developed to simulate the behavior of composite
laminates under uniaxial tension. In the model, fiber and matrix are assumed to
behave elastic–plastic and the in-plane shear to behave nonlinear with a variable
shear parameter. The damage onset for individual lamina is detected by a mixed
failure criterion, which is composed of Tsai–Wu criterion and maximum stress
criterion. After damage is taken place within the lamina, fiber and in-plane shear are
assumed to exhibit brittle behavior and matrix to exhibit degrading behavior. This
material model has been tested against experimental data and good agreement
has been obtained.

KEY WORDS: constitutive model, elastic–plastic, nonlinear, shear parameter,
mixed failure criterion, post-damage mode.

INTRODUCTION

D
UE TO LIGHTWEIGHT and high strength, the use of fiber-reinforced composite
laminate materials in aerospace industry or in applied engineering has increased

rapidly in recent years. In numerous cases involving the design of composite structures,
there is a need for more refined analysis that takes into account phenomena such as
progressive cracking and inelastic or nonlinear deformation of the composite materials.
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Such analysis is required not only to predict the deformational response, but also to
provide a method to evaluate the accurate stresses to be used in failure predictions.

Most of the advanced composite materials have organic matrices; therefore, there is a
significant nonlinear stress–strain behavior present in the transverse direction of lamina
and particularly in shear deformation [1]. A significant number of macro-mechanical
models have been proposed to represent the constitutive relation of fiber-reinforced
composite materials such as nonlinear elasticity models [2,3], plasticity models [4–8], or
damage theory coupled with elasticity [9]. In addition, various failure criteria have also
been proposed to predict the onset of damage in single layer within the fiber-reinforced
composites. There are four types of failure criteria: (a) limit theories, (b) polynomial
theories, (c) strain energy theories, and (d) direct mode determining theories. The limit
theories compare the value of each stress or strain component to a corresponding
ultimate value, such as maximum stress theory and maximum strain theory [10]. The
polynomial theories use a polynomial in stress to describe a failure surface, such as Tsai–
Wu failure criterion [11] and Hoffman failure criterion [12]. The strain energy theories
attempt to use a nonlinear energy based criterion to define failure, such as Tsai–Hill
failure criterion [13]. Finally, the direct mode determining theories are usually with
polynomials in stress and use separate equations to describe each mode of failure, such
as Hashin failure criterion [14], Lee failure criterion [15] and Chang failure criterion [16].
As for the post-damage process of individual lamina, there are two idealized types of
failure modes defined in the previous study [5]; namely, brittle and ductile. For the
brittle mode, the material is assumed to give up its entire stiffness and strength in
the dominant stress direction as the damage is reached, whereas for the ductile mode the
material remains its strength but loses its overall stiffness in the damage direction.

Obviously, a completely and rationally mechanical response analysis of individual layer
within the laminate under loading must be included three parts; namely, pre-damage
analysis, damage onset determining, and post-damage analysis. In the pre-damage analysis
the proper constitutive model of lamina is a key tool to describe the real behavior of
individual layer within the laminate under loading. In the previous study, it is assumed
that the fiber and matrix perform as elastic–plastic behavior [5] and the in-plane shear
behaves nonlinear with a constant shear parameter [16]. In this study, however, it is
proposed that the in-plane shear behaves nonlinearly with a variable shear parameter. The
difference between these two distinct types of shear parameter is investigated in this
literature. In the past, the Tsai–Wu failure criterion is the most common criterion used to
determine the damage onset of individual layer. However, Zhu and Sankar [18] proposed
that the combination of both Tsai–Wu and maximum stress criteria was a much better
criterion for damage determining of lamina. Thus, in this paper the so-called mixed
criterion, a combination of Tsai–Wu criterion and maximum stress criterion, is employed
to determine the damage onset of individual layer within the laminate under loading. For
the post-damage analysis, a degrading mode for matrix and brittle modes for fiber and
in-plane shear are proposed to simulate the post-damage behaviors of individual lamina.

In this paper, a proposed nonlinear analysis model included various post-damage
modes is described first. Second, a material constitutive model considering the nonlinear
in-plane shear behavior with variable shear parameter and the elastic–plastic behavior
of fiber and matrix is developed. Third, various failure criteria and post-damage
modes are reviewed, and amixed failure criterion and the post-damagemodes are proposed.
Fourth, the laminate governing equations are built up to describe the incremental
force–strain relations of the composite laminates. Then, the ABAQUS finite element
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program is used to carry out numerical analyses for laminates with various
configurations and various off-axis loads. The results predicted by different failure
criteria and post-damage modes are compared with each other. Finally, numerical results
for the proposed nonlinear analysis model are compared with the work done by Vaziri
et al. [5] and against the experimental data by Petit and Waddoups [2].

NONLINEAR ANALYSIS MODEL

Idealized Stress–Strain Curve and Post-Damage Model

For a single lamina under loading, the stress–strain curves of the proposed nonlinear
analysis model are shown in Figure 1. The model comprises three basic regions in fiber and
matrix; namely, the elastic, plastic, and post-damage regions. And, it comprises two basic
regions in shear; namely, the nonlinear, and post-damage regions. For the present model,
it is assumed that the material response can be adequately represented by bilinear
stress–strain curves in the principal material directions, 1-direction (fiber direction) and
2-direction (transverse direction) of the lamina, and by a nonlinear stress–strain curve for
in-plane shear in 1-2 direction. During the nonlinear stage in shear direction, the nonlinear
shear modulus, G12n, is depending on the shear strain, �12. In the pre-damage regions, the
elastic modulus for elastic stage is denoted by Eiie (i¼ 1, 2), and the elastic modulus for
plastic stage is denoted by Eiip (i ¼ 1, 2), in the principal material directions, respectively.
In the post-damage region, the elastic stiffnesses are dropped to zero (brittle modes) in
1-direction and 1-2 direction. However, the elastic stiffness is assumed to have a negative
modulus, E22f (degrading mode) in 2-direction. This means that the damaged lamina
unloads in the transverse direction through a negative tangent modulus until no load
remains in the lamina.

Nonlinear Constitutive Model of the Lamina

For fiber-composite laminate materials, each lamina can be considered as an orthotropic
layer in a plane stress condition. Taking into account the elastic–plastic behaviors in the
1-direction and 2-direction and the nonlinear behavior on the 1-2 plane within the lamina,
the stress–strain relations for an orthotropic lamina in the material coordinates (1, 2) can be
written as [3]
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where "1, "2, and �12 represent the strains in 1-direction, 2-direction and 1-2 plane,
respectively. �1, �2 and �12 denote the stresses in 1-direction, 2-direction and 1-2 plane,
respectively. The terms �12 and �21 are the Poisson’s ratios. The terms E11 and E22 are the
elastic moduli in 1-direction and 2-direction. If the material in 1-direction or 2-direction is
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Figure 1. Stress–strain curves of the proposed nonlinear failure model.
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in the elastic stage, then E11 ¼ E11e or E22 ¼ E22e. And if the material is in the plastic stage
in 1-direction or 2-direction, then E11¼E11p or E22¼E22p. The G12 is the shear modulus
and S6666 is a shear parameter to account for the in-plane shear nonlinearity. The S6666 is a
function of shear strain and can be determined by fitting the stress–strain curve of pure
shear test data.

The incremental stress–strain relations for a nonlinear orthotropic lamina can be given
as follows:

�f�0g ¼ ½Q0
1
�f"0g ð2Þ

�f�0tg ¼ ½Q0
2
�f� 0

tg ð3Þ
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The terms �1 and �2 are the shear correction factors and are taken to be 0.83 in this study
[17]. It is assumed that the transverse shear stresses always behave linearly and do not
affect the nonlinear in-plane behavior of individual lamina.

FAILURE CRITERION AND DEGRADATION OF STIFFNESS

Review of Failure Criteria

As previously mentioned, failure criteria fall into four basic categories: (1) limit theories,
(2) polynomial theories, (3) strain energy theories, and (4) direct mode determining
theories. Among them, three types of failure criteria, i.e., maximum stress criterion,
Tsai–Wu failure criterion and Chang failure criterion, are selected to be reviewed and
numerical results based on these failure criteria are compared with each other.

MAXIMUM STRESS CRITERION
The maximum stress criterion is the dominant member of the limit failure theory

category. For the plane stress condition, the maximum stress criterion for an orthotropic
material can be expressed as follows:

�1
Xut

¼ 1 or
�1
Xuc

¼ 1 ð6Þ
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�2
Yut

¼ 1 or
�2
Yuc

¼ 1 ð7Þ

�12
S

¼ 1 ð8Þ

where Xut, Yut and Xuc, Yuc are the ultimate longitudinal strengths and ultimate
transverse strengths in tension and compression of the lamina, and S is the ultimate in-
plane shear strength.

TSAI–WU FAILURE CRITERION
The Tsai–Wu failure criterion has a general nature, because it contains almost all other

polynomial theories as special cases. Under the plane stress condition, the Tsai–Wu failure
criterion has the following form:

F1�1 þ F2�2 þ F11�
2
1 þ 2F12�1�2 þ F22�

2
2 þ F66�

2
12 ¼ 1 ð9Þ

where

F1 ¼
1

Xut
þ

1

Xuc
, F11 ¼

1

XutXuc
, F2 ¼

1

Yut
þ

1

Yuc
, F22 ¼

1

YutYuc
, F66 ¼

1

S2
:

The stress interaction term F12 in Equation (9) is difficult to be determined and
Narayanaswami and Adelman [19] suggested that F12 could be set equal to zero for
practical engineering applications. Therefore, F12¼ 0 is used in this study.

CHANG FAILURE CRITERION
As previous described, some direct mode determining failure criteria have been

proposed, such as Hashin failure criterion [14], Lee failure criterion [15], and Chang failure
criterion [16]. These failure criteria provide separate failure equations for each mode of
failure. In this paper, only the Chang failure criterion is reviewed. In a plane stress space,
Chang uses five distinct polynomials to describe five modes of failure, which are discussed
below:

1. Fiber breakage mode

�1
Xut

¼ 1 ð10Þ

2. Fiber buckling failure mode

�1
Xuc

¼ 1 ð11Þ

3. Matrix tensile cracking mode

�2
Yut

� �2

þ
ð�12=2G12Þ þ ð3=4ÞS6666�

4
12

ðS2=2G12Þ þ ð3=4ÞS6666S4
¼ 1 ð12Þ
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4. Matrix compression failure mode

�2
Yuc

� �2

þ
ð�12=2G12Þ þ ð3=4ÞS6666�

4
12

ðS2=2G12Þ þ ð3=4ÞS6666S4
¼ 1 ð13Þ

5. Fiber–matrix shearing failure mode

�1
Xut

� �2

þ
ð�12=2G12Þ þ ð3=4ÞS6666�

4
12

ðS2=2G12Þ þ ð3=4ÞS6666S4
¼ 1 ð14Þ

or

�1
Xuc

� �2

þ
ð�12=2G12Þ þ ð3=4ÞS6666�

4
12

ðS2=2G12Þ þ ð3=4ÞS6666S4
¼ 1 ð15Þ

It should be noted that S6666 is a constant in Chang failure criterion.

Proposed Mixed Failure Criterion

Although the Tsai–Wu failure criterion is widely used in determining the damage
onset of a lamina, there are some drawbacks with it. Among them is the fact that the
failure stress of fiber in a lamina exceeds the strength of material for the case of symmetric
angle-ply laminates with small fiber angle (say 0�<
<20�) subjected to off-axis tension.
In order to eliminate this unreasonable phenomenon, the limitation of maximum stress of
fiber is added into the Tsai–Wu failure criterion to obtain a mixed failure criterion. For the
plane stress condition, neglecting the stress interaction term F12 in Equation (9), the mixed
failure criterion can be written as the following formulations:

F1�1 þ F2�2 þ F11�
2
1 þ F22�

2
2 þ F66�

2
12 ¼ 1 ð16Þ

and

�1=Xut � 1 or �1=Xuc � 1 ð17Þ

Normalized Failure Stresses and Failure Contribution

The Tsai–Wu failure criterion and the proposed mixed failure criterion consider
the coupling effect of in-plane stresses, �1, �2 and �12, in the lamina when the collapse
occurs. In order to figure out the individual stress ratio and failure contribution
in the lamina, two terminologies are defined, which are normalized failure stresses
and failure contributions. The normalized failure stresses represent the stress ratios
(failure stresses/corresponding strengths) in the lamina for various stresses at the onset of
collapse, which are described as follows:

ð�11f Þn ¼
�11f
Xut

or ð�11f Þn ¼
�11f
Xucj j

ð18aÞ
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ð�22f Þn ¼
�22f
Yut

or ð�22f Þn ¼
�22f
Yucj j

ð18bÞ

ð�12f Þn ¼
�12f
S

��� ��� ð18cÞ

where (�11f)n, (�22f)n and (�12f)n denote the normalized failure stresses in 1-direction,
2-direction, and 1-2 plane of the lamina, respectively. The �11f, �22f and �12f are the stresses
of the lamina in 1-direction, 2-direction and 1-2 plane, respectively, at the onset of failure.

The failure contributions are defined as:

FC11 ¼ F1�1 þ F11�
2
1 ð19aÞ

FC22 ¼ F2�2 þ F22�
2
2 ð19bÞ

FC12 ¼ F66�
2
12 ð19cÞ

where FC11, FC22 and FC12 indicate the failure contributions of �1, �2 and �12,
respectively, when the lamina collapses.

Property Degradation Models

Upon damage within the lamina occurring, the material begins to degrade its
property. Material degradation within the damaged area was evaluated based on the
mode of failure predicted by the failure criterion. Therefore, the residual stiffnesses of
composites strongly depend on the mode of failure in each layer. According to the
literature, the property degradation models for each layer can be separated into three
idealized types of failure modes named as brittle, ductile [5] and degrading mode [2].
For the brittle mode, the material is assumed to lose its entire stiffness and strength in
the dominant stress direction, whereas for the ductile mode the material retains its strength
but loses all of its stiffness in the failure direction. For the degrading mode the material is
assumed to lose its stiffness and strength in the failure direction gradually until the stress in
that direction is reduced to zero.

For the maximum stress theory, the stresses in principal material directions must be less
than the respective strengths, otherwise fracture is said to have occurred. Although this
failure criterion can distinguish the failure modes of material, the failure modes are all
brittle types. For the Tsai–Wu failure theory, it cannot distinguish the failure modes and
does not consider the post failure condition.

CHANG’S PROPERTY DEGRADATION MODEL
For the Chang failure theory, it not only can distinguish the failure modes but also

consider the post failure conditions. The Chang’s property degradation models [16]
for each lamina are described as follows:

1. For the matrix tensile or compressive failure mode, the in-plane properties in the failed
layer are reduced as

½Q0
1
 ¼

E11 0 0

0 0 0

0 0
1

1=G12 þ 3S6666�212

2
664

3
775 ð20Þ
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2. For the fiber breakage or buckling failure mode, the material in that region cannot
sustain furthermore load. Thus the material properties for the failed layer and all other
layers are reduced to zero.

½Q0
1
 ¼

0 0 0

0 0 0

0 0 0

2
64

3
75 ð21Þ

3. For the fiber–matrix shearing failure mode, the material can still carry load in the fiber
direction and in the matrix direction, but shear loads can no longer be carried. This is
modeled by reducing the shear property and the Poisson’s ratios, �12 and �21, to zero.

½Q0
1
 ¼

E11 0 0

0 E22 0

0 0 0

2
64

3
75 ð22Þ

PROPOSED PROPERTY DEGRADATION MODEL
In this investigation, it is proposed that the post damage mode are idealized as the

brittle behavior for �1 and �12 and the degrading behavior for �2. The following three
rules are used to determine whether the ply failure is caused by matrix fracture,
shear failure, or fiber breakage or buckling [20]:

1. If a ply fails in the condition of Xuc<�1<Xut and �S<�12<S, the damage is
assumed to be matrix induced. Consequently, the degradation of transverse stiffness
occurs. Due to the interlock action with the neighboring plies, the damaged ply gradually
loses its capability to support transverse stress, until the fracture in shear or the breakage
or buckling in fiber on the same ply. But, the lamina remains to carry the longitudinal
and shear stresses. In this case, the constitutive matrix of the lamina becomes

½Q0
1
 ¼

E11 0 0

0 E22f 0

0 0
1

1=G12 þ 3S6666�212

2
6664

3
7775 ð23Þ

where E22f is a negative tangent modulus in transverse direction of lamina after matrix
damage. In the proposed model, the shear parameter S6666 has variable value.

2. If the ply fails in the condition of Xuc<�1<Xut, and �12�S or �12��S, the
damage is assumed to be shear induced. Consequently, the damaged lamina loses
its capability to support transverse and shear stresses, but remains to carry longitudinal
stress. In this case, the constitutive matrix of the lamina becomes

½Q0
1
 ¼

E11 0 0

0 0 0

0 0 0

2
64

3
75 ð24Þ
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3. If the ply fails with �1�Xut or �1�Xuc, the ply failure is caused by the fiber breakage
or buckling and a total ply rupture is assumed. Thus, the constitutive matrix of
the lamina becomes

½Q0
1
 ¼

0 0 0

0 0 0

0 0 0

2
64

3
75 ð25Þ

LAMINATE GOVERNING EQUATIONS

The forgoing nonlinear failure analysis model for fiber-reinforced composite lamina
can be combined with classical lamination theory to form the following incremental
laminate force–strain relations:

�fNg ¼
Xn
i¼1

½Q
iti�f"g ð26Þ

where �fNg ¼ �fNx,Ny,Nxyg
T and �f"g are the vectors of the resultant membrane

forces and the incremental strains in the overall laminate coordinate system ðx, yÞ,
respectively. The term ti is the thickness of the ith layer, n is the number of layers. The
matrix ½Q
i stands for constitutive matrix for the ith layer and can be obtained by proper
rotation of the ½Q0

1
 matrix of that layer.

NUMERICAL ANALYSIS

Numerical Calculation and Material Properties

The aforementioned nonlinear constitutive model combined with various failure criteria
and various post damage modes for composite materials are implemented into a
FORTRAN subroutine and linked to the ABAQUS finite element program [21]. The
analyzed laminates are simply supported around all edges of the plate as shown in Figure
2. The ply orientation of the laminate can be selected arbitrarily, but it must be symmetric
with respect to the middle plane of the plate. The laminate is subjected to uniaxial tensile
load only. No out-of plane loading, bending or torsion is applied. The aspect ratio of all
laminates analyzed is L/W¼ 10 with t/W<1/20, where L, W and t represent the length,
width and thickness of the laminate, respectively. The laminae are assumed to be
perfectly bounded and no slipping occurs within the laminate. Since the stress field is
uniform through out the composite, only one quadrangular shell element with eight
nodes is used to simulate the laminate in the numerical analysis.

In ABAQUS program, the local stresses and strains of the shell element in each lamina
within the laminate can be automatically transformed to global coordinates. Basically,
stresses and strains are calculated at each incremental step, and evaluated by the failure
criteria to determine the occurrence of failure and the mode of failure. Mechanical
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properties in the damaged area are reduced appropriately, according to the property
degradation models. Stresses and strains will then be recalculated to determine any
additional damage as a result of stress redistribution at the same load. This procedure will
continue until no additional damage is found, and the next increment is then pursued.
The final collapse load is determined when the composite plates cannot sustain any
additional load.

In order to verify the proposed nonlinear failure analysis model, numerical results
generated from the model are compared with the test data [2]. The material properties
and strengths of Boron/Epoxy composites used in the calculation are:

Material properties:

E11e ¼ 207GPa, E11p ¼ 180GPa, E22e ¼ 21:2GPa, E22p ¼ 15:9GPa,

E22f ¼ �33:116GPa, G12 ¼ 7:25GPa, �12 ¼ 0:3

S6666 ¼
15:198GPa�3 if constant
20:61� 20 expð��12=0:00337Þ GPa�3 if variable:

�

Yield Strengths:

Xyt ¼ 828MPa, Xyc ¼ �1346MPa, Yyt ¼ 57:9MPa, Yyc ¼ �97:3MPa:

Ultimate strengths:

Xut ¼ 1370MPa, Xuc ¼�2787MPa, Yut ¼ 86:3MPa, Yuc ¼�262MPa, S¼ 128:6MPa:

It should be noted that the shear parameter S6666 has two types, a constant type and a
variable type. The variable shear parameter is obtained by curve fitting from the pure
shear test data [2], as shown in Figure 3. In this study, we use these two types of shear
parameters in pure shear simulation to verify the proposed variable shear parameter can
predict the shear behavior of laminates more accurately.

Figure 2. Geometry and boundary conditions of the composite laminates.
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Verification of the Proposed Nonlinear Constitutive Model

It is necessary to assure that the proposed constitutive model can correctly simulate
the stress–strain relations, in the principal directions and in pure shear of a lamina
before predicting the mechanical behavior and failure stresses of composite laminates
under various loading. Vaziri et al. [5] proposed an elastic–plastic constitutive model,
which assumed that the material response could be adequately represented by bilinear,
stress–strain curves in the principal directions and in pure shear for fiber-reinforced
composite laminates. The main difference between the Vaziri’s model and the proposed
constitutive model is that the stress–strain relation in pure shear is assumed to be
bilinear in the Vaziri’s model and to be nonlinear (with a variable shear parameter) in
the proposed model. Figure 4 shows the numerical results for a single lamina subjected
to pure shear loading against the experimental data [2]. It is obvious that the shear
stress–strain curve simulated by the proposed constitutive model agrees with the test
data much better than that simulated by the Vaziri’s model. The simulations of the
stress–strain relations in principal directions by the Vaziri’s model and the proposed
model all agree very well with the test data [22] and are not shown here due to limited
space.

The results simulated by the variable S6666 model and the constant S6666 model for a
½þ45=�45
s laminate subjected to uniaxial tension loading are shown in Figure 5. It can be
seen that the result simulated by the proposed variable S6666 model exhibits better fit with
the test data than that simulated by the constant S6666 model. Therefore, the proposed
nonlinear constitutive model with elastic–plastic behavior in the principal directions and
with nonlinear behavior, described by variable shear parameter, in pure shear is verified to
be a suitable and reliable model for simulating the stress–strain behavior of composite
lamina under loading.

Figure 3. The nonlinear shear parameter S6666 in various shear strain �12 for the single Boron/Epoxy lamina.
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Comparisons Among Various Post Failure Modes

The load–deformation behavior of a composite laminate is greatly affected by the
stress–strain behavior of individual layer within the laminate and the ultimate strength of
a composite laminate is greatly controlled by the post-damage mode of damaged lamina
within the laminate. In order to verify the proposed post-damage mode in transverse

Figure 4. Pure shear stress–strain curve for the single Boron/Epoxy lamina.

Figure 5. Uniaxial tensile stress–strain curve simulated by various S6666 models for [þ45/�45]S Boron/Epoxy
laminate.
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direction of lamina is a suitable one, three idealized post failure modes, brittle, ductile
and degrading modes, are taken into account. Figures 6–9 illustrate the distinct results
simulated by these three post-damage modes for various [þ
/(
� 90)]s symmetrical
composite laminates subjected to uniaxial tensile loading. For the [0/90]s laminate, as
indicated in Figure 6, all the simulations by various post-damage modes seem to agree
with the test data [2] very well before the initial damage point. However, after the initial
damage point the stress–strain curve simulated by degrading mode shows better fit with
the test data than those simulated by the other two modes. In the post-damage stage, the

Figure 6. Uniaxial tensile stress–strain curve simulated by various matrix post failure modes for [0/90]S

laminate.

Figure 7. Uniaxial tensile stress–strain curve simulated by various matrix post failure models for [þ15/�75]S

laminate.
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strength of the laminates is overestimated by the ductile mode and underestimated by the
brittle mode. For the ½þ15=–75
s and ½þ30=–60
s laminates, as shown in Figures 7 and 8,
although there are no test data to be compared with, they generally exhibit the same trend
in numerical simulations, i.e., the ultimate stresses predicted by brittle and ductile modes
are much lower than that predicted by the degrading mode. For [þ 45/�45]s composite
laminate, shown in Figure 9, the result predicted by degrading mode shows better fit with
the test data than those predicted by the other two modes. Therefore, the degrading mode

Figure 8. Uniaxial tensile stress–strain curve simulated by various matrix post failure modes for [þ30/�60]S

laminate.

Figure 9. Uniaxial tensile stress–strain curve simulated by various matrix post failure modes for [þ45/�45]S

laminate.
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in tansverse direction of lamina is a more suitable post-damage mode than the other two
modes and is used in the following numerical analyses. From Figures 7–9, we can also
observe that the ultimate stress of the laminate predicted by ductile mode is close to that
predicted by brittle mode as the angle 
 of [þ 
/(
�90)]s laminate closes to 45�. In addition,
the ultimate stresses of the laminates predicted by these two modes are always lower than
that predicted by the degrading mode.

Comparisons Among Various Failure Criteria

As mentioned early, several failure criteria are widely used for composite materials, but
there is no mechanic explanation why these criteria should work or what their limitations
are. The Tsai–Wu failure criterion is one of the major quadratic failure criteria and has
been extensively used in literature. To investigate the limitations of the Tsai–Wu failure
criterion, the results predicted by the Tsai–Wu and the proposed mixed failure criteria are
compared with each other.

Figures 10 and 11 illustrate the normalized failure stresses and failure contributions
of various ½þ
=–

s laminates under uniaxial tensile load with the Tsai–Wu failure criterion
and the proposed mixed failure criterion. The value of the normalized failure stress with
the Tsai–Wu failure criterion in 1-direction of the lamina is bigger than 1 for the cases of
08 < 
 < 208 (Figure 10). It means that the failure stress of fiber excesses its material
strength and is not a reasonable phenomenon. The Tsai–Wu failure criterion assesses the
failure of material by considering the failure contributions of all the material stresses, i.e.,
fiber stress, matrix stress and in-plane shear stress. When the ½þ
=–

s laminates under
uniaxial tensile load are in the cases of 08 < 
 < 208, the failure contributions of transverse
stress (matrix stress) have negative values and the failure contributions of shear stress have
lower positive values. Therefore, based on the Tsai–Wu failure criterion, the failure of the

Figure 10. The normalized material failure stresses predicted by Tsai–Wu and proposed failure criteria for
various [þ
/�
]s laminates.
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laminate must occur at a high value of failure contribution in fiber stress to make the sum
of various failure contributions equal to unity. In these cases, the failure contribution of
fiber stress usually excesses the value 1 and it results in an overestimated failure stresses in
fiber direction. To eliminate this unreasonable estimation, an extra limitation should be
added into the Tsai–Wu failure criterion to obtain a more accurate and reasonable
prediction. The proposed limitation in this study is �1=Xut � 1 (as �1 > 0) or �1=Xuc � 1
(as �1 < 0). The combination of Tsai–Wu failure criterion with the proposed limitation is
called the mixed failure criterion. The results predicted by mixed failure criterion in
Figures 10 and 11 shows the reasonable values. In addition, Figure 11 indicates that the
failure of laminate is induced by the fiber stress, matrix stress, in-plane shear stress, or any
combination of these stresses for various ½þ
=� 

s laminates under uniaxial tensile load.
When 08 � 
 � 258, the failure of laminate is mainly induced by fiber stress. For
258 < 
 < 358, the failure of laminate is induced by the combination of fiber stress and
in-plane shear stress. In the cases of 358 � 
 � 458, the failure of laminate is primarily
induced by in-plane shear stress. When 458 < 
 < 508, the failure of laminate is induced by
the combination of in-plane shear stress and matrix stress. For 508 � 
 � 908, the failure
of laminate is almost induced by matrix stress. It should be noted that the fiber stress and
in-plane shear stress have the same normalized stress and failure contribution as failure
occurring about at 
 ¼ 308.

Figure 12 illustrates the comparison of uniaxial tensile stress–strain curves between
various failure criteria with experimental data [2] for ½þ30=�30
s composite laminate. The
results predicted by the Tsai–Wu and the proposed mixed failure criteria have the
best agreement with the experimental data, and the result predicted by the Chang failure
criterion has a better agreement with the experimental data than the maximum stress
criterion does. As discussed preciously, the failure of [þ 
/�
]s laminate is mainly induced
by the combination of fiber stress and in-plane shear stress when 25� < 
<35�. Thus, for
the [þ 30/�30]s laminate, the fiber stress and in-plane shear stress play the same important
roles in determining the on set of failure. The maximum stress theory does not consider

Figure 11. The failure contributions of material stresses predicted by Tsai–Wu and proposed failure criteria for
various [þ
/�
]s laminates.
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the coupling failure contribution of fiber stress and in-plane shear stress in the failure
process. Hence, the failure stress of laminate in this case will be greatly overestimated due
to only considering the failure of fiber stress or in-plane shear stress.

Figure 13 indicates the comparison of failure stresses for various ½þ
=�

s laminates
subjected to uniaxial tensile load with various failure criteria against experimental data [2].
In the cases of 0� � 
� 25�, the failure stresses predicted by maximum stress criterion,

Figure 12. Uniaxial tensile stress–strain curve simulated by various failure criteria for [þ30/�30]s laminate.

Figure 13. Uniaxial tensile failure stress predicted by various failure criteria for various [þ
/�
]s laminates.
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Chang failure criterion and the proposed mixed failure criterion are similar. But the failure
stresses predicted by Tsai–Wu failure criterion are overestimated, especially at 
¼ 15�.
This is because that higher failure contributions of fiber stresses are needed to balance the
negative failure contributions induced by matrix stresses. In the cases of 25�<
<35�, the
failure stresses predicted by Tsai–Wu and proposed mixed failure criteria are similar
because of using the same post-damage mode. The results predicted by maximum stress
criterion and Chang failure criterion are overestimated. This is because that the maximum
stress criterion does not consider the failure contributions coupled between fiber stress
and in-plane shear stress. For Chang failure criterion, it is due to the use of the constant
stiffness instead of degrading stiffness for matrix in the post-damage process. In the cases
of 35�<
<90�, the results predicted by various failure criteria are very similar.

Figure 14 indicates the comparison of failure stresses for various [(
)3/(
þ 45)/(
� 45)]s
laminates subjected to uniaxial tensile load with various failure criteria against experi-
mental data [2]. The failure stresses predicted by Chang and the proposed mixed failure
criteria are almost similar in all cases of 
 and the results are in good agreement with
the test data. In the cases of 0� � 
� 15�, the failure stresses are overestimated
by Tsai–Wu failure criterion, especially at 
¼ 0�. This is due to the interaction among
0� and � 45� plies, causing the matrix stress in 0� ply to increase. As a result, large negative
failure contributions of matrix stresses are induced and excessive positive failure
contributions of fiber stresses are needed to balance them. The results predicted by
the maximum stress criterion failure criterion exhibit two distinct trends in the cases of
10�<
<60�. The predicted failure stresses are usually underestimated when 10�<
<38�,
but overestimated when 38�<
<60�. From Figures 13 and 14, it may conclude that the
mixed failure criterion has not only reasonable predicting results but also better agreement
with the test data.

Figure 14. Uniaxial tensile failure stress predicted by various failure criteria for various [(
)3/(
þ45)/(
� 45)]s

laminates.
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Comparisons Between Elastic–Plastic and Proposed Nonlinear Constitutive Models

Figures 15 and 16 illustrate the comparison of uniaxial tensile stress–strain curve for
½ð0Þ3=þ45=�45
s and ½ð65Þ3=þ20=�70
s laminates with Vaziri’s elastic–plastic constitutive
model [5] and the present model against the test data [2]. The mechanical responses of

Figure 15. Uniaxial tensile stress–strain curve simulated by Vaziri model and present model for
[(0)3/þ45/�45]s laminate.

Figure 16. Uniaxial tensile stress–strain curve simulated by Vaziri model and present model for
[(65)3/þ20/�70]s laminate.
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these two types of laminates exhibit the interaction of normal stress and in-plane shear
stress with neighboring laminae, especially for the [(65)3/þ20/�70]s laminate. The results
simulated by the present model have better agreements with the test data than the Vaziri’s
model does. The results simulated by the Vaziri’s model have fair agreements with the test
data of ½ð0Þ3=þ45=�45
s, laminate. However, due to the poor simulation on in-plane shear
stress of the lamina, the results simulated by the Vaziri’s model give very poor agree-
ments with the test data of [(65)3/þ 20/�70]s laminate. Thus, the present model is really a
reasonable and accurate analysis model in predicting the stress–strain behavior as well as
the ultimate stress of Boron/Epoxy composite laminates for various symmetrical staking
sequences under uniaxial tensile load.

CONCLUSIONS

This paper presents a material constitutive model for simulating the mechanical
response and predicting the ultimate strength of various symmetrical composite laminates
subjected to uniaxial tensile load. The model is composed of three parts: (1) nonlinear
constitutive model, (2) mixed failure criterion, and (3) post-damage mode. In the nonlinear
constitutive model, the fiber and matrix are simulated by elastic–plastic behavior and the
in-plane shear is simulated by nonlinear behavior with variable shear parameter, which is a
function of in-plane shear strain. The mixed failure criterion is composed of the Tsai–Wu
failure criterion and the maximum stress criterion to determine the damage onset of a
lamina. The present failure criterion can eliminate the over estimation in fiber stresses as
the negative failure contributions of matrix stresses occurring in the lamina. In the post-
damage process, the fiber and the in-plane shear are simulated by a brittle mode and the
matrix by a degrading mode.

The ultimate strengths predicted by the various failure criteria together with various
post-damage modes against the experimental data show that the proposed mixed failure
criterion and post-damage modes could predict the failure response of composite
laminates under uniaxial tension more accurately than others. The numerical results
simulated by Vaziri’s elastic–plastic constitutive model and the present constitutive model
against the test data illustrate that the present constitutive model can predict the stress–
strain relation, especially for the interaction of normal stress and in-plane shear stress in
neighboring laminae, more accurately. The favorable agreement between the present
numerical predictions and experimental data demonstrates that the nonlinear constitutive
model together with the mixed failure criterion and degrading post-damage modes is a
useful tool in the nonlinear failure analysis of fiber-reinforced composite laminated
materials. It shows the potential of the present nonlinear failure approach.
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