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Abstract

The fundamental frequencies of laminated truncated conical shells with a given material system are maximized with respect to
fiber orientations by using a sequential linear programming method with a simple move-limit strategy. The significant influences of
shell thickness, shell length, shell radius ratio and cutout on the maximum fundamental frequencies and the associated optimal fiber
orientations are demonstrated. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to light weight and high strength, the use of fi-
ber-reinforced composite laminated materials in aero-
space industry have increased rapidly in recent years.
The truncated conical shell configuration is widely used
in aircraft, spacecraft, rocket and missile, which are
frequently subjected to dynamic loads in service. Hence,
knowledge of dynamic characteristics of truncated
conical shells constructed of fiber-reinforced laminated
materials, such as their fundamental frequencies, is es-
sential [1].

The fundamental frequencies of laminated truncated
conical shells highly depend on ply orientations,
boundary conditions, and geometric variables such as
thickness, shell radius ratio, shell length and cutout [2—
10]. Therefore, for laminated truncated conical shells
with a given material system, geometric shape, thickness
and boundary condition, the proper selection of ap-
propriate lamination to maximize the fundamental
frequency of the shells becomes an interesting problem
[11-13].

Research on the subject of structural optimization
has been reported by many investigators [14]. Among
various optimization schemes, the method of sequential
linear programming has been successfully applied to
many large scale structural problems [15,16]. In this
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investigation, optimization of fiber-reinforced laminated
truncated conical shells to maximize their fundamental
frequencies with respect to fiber orientations is per-
formed by using a sequential linear programming
method together with a simple move-limit strategy. The
fundamental frequencies of laminated truncated conical
shells are calculated by using the ABAQUS finite ele-
ment program [17]. In the paper, the constitutive equa-
tions for fiber-composite laminate, vibration analysis
and optimization method are briefly reviewed. Then the
influence of shell thickness, shell length, shell radius
ratio and cutout on the optimal fundamental frequency
and the associated optimal fiber orientation of lami-
nated truncated conical shells is presented. Finally, im-
portant conclusions obtained from the study are given.

2. Constitutive matrix for fiber-composite laminae

In the finite element analysis, the laminated truncated
conical shells are modeled by eight-node isoparametric
shell elements with six degrees of freedom per node
(three displacements and three rotations). The doubly
curved shell element has four edges (three nodes per
edge) and can be used to model fairly complicated
curved surface structures very accurately. The reduced
integration rule together with hourglass stiffness control
is employed to formulate the element stiffness matrix
[17]. During the analysis, the constitutive matrices of
composite materials at element integration points must
be calculated before the stiffness matrices are assembled
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from element level to global level. For fiber-composite
laminated materials, each lamina can be considered as
an orthotropic layer in a plane stress condition (Fig. 1).
The stress—strain relations for a lamina in the material
coordinates (1,2,3) at an element integration point can
be written as
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The a; and o, are shear correction factors, which are
calculated in ABAQUS by assuming that the transverse
shear energy through the thickness of laminate is equal
to that in unidirectional bending [17,18]. The constitu-
tive equations for the lamina in the element coordinates
(x,y,z) become

\
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Matrix

Fig. 1. Material, element and structure coordinates of laminated
truncated conical shells.
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and 60 is measured counterclockwise about the z-axis
from the element local x-axis to the material 1-axis. The
element coordinate system (x,y,z) is a curvilinear local
system (Fig. 1) that is different from the structural global
coordinate (X, Y,Z). While the element x-axis is in the
longitudinal direction of the truncated conical shell,
element y- and z-axes are in the circumferential and the
radial directions of the truncated conical shell. Let
{eo} = {&w, &0, yxyO}T be the in-plane strains at the mid-
surface of the laminate section, {K} = {r,, K, K} the
curvatures, and /% the total thickness of the section. If
there are n layers in the layup, the stress resultants,
{N} = {Nm Ny, ny}Ta {M} = {Mm M,, MW}T and
{V} = {W, ¥,}", can be defined as
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where z;; and z;, are the distance from the mid-surface of
the section to the top and the bottom of the jth layer,
respectively. The [0] is a 3 by 2 matrix with all the co-
efficients equal to zero.

3. Vibration analysis

For the finite-element analysis of an undamped
structure, if there are no external forces, the equation of
motion of the structure can be written in the following
form [19]:

[(M{D} + [K]{D} = {0}, (7)
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where {D} is a vector containing the unrestrained nodal
degrees of freedoms, [M] a structural mass matrix, [K] a
structural stiffness matrix, and {0} a zero vector. Since
{D} undergoes harmonic motion, the vectors {D} and
{D} become

{D} = {D}sinwt; {D} = —w*{D}sinwt, (8)

where {D} vector contains the amplitudes of {D} vector
and o is the frequency. Then Eq. (7) can be written in an
eigenvalue expression as

(K] = A[M]){D} = {0}, ©)

where 4 = w? is the eigenvalue and {D} becomes the

eigenvector. In ABAQUS, a subspace iteration proce-
dure [20] is used to solve for the eigenvalues, the natural
frequency, and the eigenvectors. The obtained smallest
natural frequency (fundamental frequency) is then the
objective function for maximization.

4. Sequential linear programming

A general optimization problem may be defined as
the following:

Maximize f(x) (10a)
subject to  gi(x) <0, i=1,...,r (10b)
hix)=0, j=r+1,...,m, (10c)
Pe <x: < g, k=1,...,n, (10d)

where f(x) is an objective function, g;(x) are inequality
constraints, A;(x) are equality constraints, and x =
{x1,%2, ... 7x,,}T is a vector of design variables.

For the general optimization problem of Egs. (10a)—
(10d), a linearized problem may be constructed by ap-
proximating the nonlinear functions about a current
solution point, x, = {xo1,X02, - - - ,xo,,}T, in a first-order
Taylor series expansion as follows:

Maximize f(x) = f(x,) + Vf(x,)"0x (11a)
subject to  g;(x) = gi(x,) + Vgi(;co)T(S;cg 0,
i=1,...r (11b)
hi(x) = hj(xo) + Vhj(xg) ' 6x = 0,
j=r+1,....,m, (11c)
<xe<qr, k=1,...,n, (11d)
where 0x = {x; — Xo1,X2 — X2, - - -, Xn —xo,,}T. It is clear

that Eqgs. (11a)—(11d) represent a linear programming
problem where variables are contained in the vector dx.
A solution for Egs. (11a)-(11d) may be easily obtained
by the simplex method [21]. After obtaining a solution
of Egs. (11a)—(11d), say x,, we can linearize the original
problem, Egs. (10a)—(10d), at x, and solve the new linear
programming problem. The process is repeated until a

precise solution is achieved. This approach is referred to
as sequential linear programming [15,16].

Although the procedure for a sequential linear pro-
gramming is simple, difficulties may arise during the it-
erations. First, the optimum solution for the
approximate linear problem may violate the constraint
conditions of the original optimization problem. Sec-
ond, in a nonlinear problem, the true optimum solution
may appear between two constraint intersections. A
straightforward successive linearization may lead to an
oscillation of the solution between the widely separated
values. Difficulties in dealing with such a problem may
be avoided by imposing a “move limit” on the linear
approximation [15,16]. The concept of a move limit is
that a set of box-like admissible constraints are placed in
the range of dx and it should gradually approach zero as
the iterative process continues. It is known that com-
putational economy and accuracy of the approximate
solution may depend greatly on the choice of the move
limit. In general, the choice of a suitable move limit
depends on experience and also on the results of previ-
ous steps.

The algorithm of the sequential linear programming
with selected move limits may be summarized as follows:

(1) Linearize the nonlinear objective function and as-

sociated constraints with respect to an initial guess x,,.

(2) Impose move limits in the form of

—8 < (x — xy) <R, where S and R are properly chosen

lower and upper bounds.

(3) Solve the approximate linear programming prob-

lem to obtain an optimum solution x;.

(4) Repeat the procedures from (1) to (3) by redefin-

ing x, with x, until either the subsequent solutions do

not change significantly (i.e., true convergence) or the
move limit approaches zero (i.e., forced convergence).

If the solution obtained is due to forced convergence,

the procedures from (1) to (4) should be repeated

with another initial guess.

5. Numerical analysis

5.1. Laminated truncated conical shells with various
lengths, radius ratios and boundary conditions

In this section laminated truncated conical shells with
four types of boundary conditions (Fig. 2(a)) are con-
sidered, which are two ends fixed (denoted by FF), left
end simply supported and right end fixed (denoted by
SF), left end fixed and right end simply supported (de-
noted by FS), and two ends simply supported (denoted
by SS). The radius of the truncated conical shell at the
right edge, r;, is equal to 10 cm and the radius of the
shell at the left edge, r», is selected to be 6, 8, and 10 cm
(radius ratio ,/r; = 0.6, 0.8 and 1). The length of shell
L varies between 10 and 40 cm. The laminate layups of
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(b) Truncated concial shells with central circular cutout

Fig. 2. Boundary condition and geometry of laminated truncated
conical shells.
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(b) Optimal fundamental frequency ® vs. L/r; ratio

Fig. 3. Effect of boundary conditions and L/r, ratio on optimal fiber
angle and optimal fundamental frequency of [+£0/90,/0],, laminated
truncated conical shells (r; = 10 cm, r, = 6 cm).
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(b) Optimal fundamental frequency @ vs. L/r; ratio

Fig. 4. Effect of boundary conditions and L/r ratio on optimal fiber
angle and optimal fundamental frequency of [+6/90,/0],, laminated
truncated conical shells (»; = 10 cm, r, = 8 cm).

the shells are [£0/90,/0] . and the thickness of each ply
is 0.125 mm. In order to study the influence of shell
thickness on the results of optimization, n = 2 (20-ply
thin shell) and 10 (100-ply thick shell) are selected for
analysis. The lamina consists of Graphite/Epoxy and
material constitutive properties are taken from Crawley
[22], which are E;; =128 GPa, E; =11 GPa,
Vip = 025, G12 = G13 =4.48 GPa, G23 =1.53 GPa,
p=15x10%kg/m*. In the analysis, no symmetry
simplifications are made for those shells. Based on the
convergent studies of the laminated truncated conical
shells [23], it was decided to use 64 shell elements (16
rows in circumferential direction and four rows in lon-
gitudinal direction) to model the truncated conical shells
with L/r; =1 and 208 shell elements (16 rows in cir-
cumferential direction and 13 rows in longitudinal di-
rection) to model the shells with L/r; = 4. For shells
with 1 < L/r; < 4, the numbers of elements are properly
scaled between 64 and 208.

Based on the sequential linear programming method,
in each iteration the current linearized optimization
problem becomes:
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(b) Optimal fundamental frequency o vs. L/r; ratio

Fig. 5. Effect of boundary conditions and L/r; ratio on optimal fiber
angle and optimal fundamental frequency of [£60/90,/0],, laminated
truncated conical shells (r; = 10 cm, , = 10 cm).
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Maximize ®(0) = w(6y) + (6 — 0p) — (12a)
00 |4,

subject to 0° < 0<90°, (12b)

—rxgx0.5<(0—-0)<rxgqgx0.5", (12¢)

where o is the fundamental frequency. The 6, is a so-
lution obtained in the previous iteration. The r and ¢ in
Eq. (12¢) are the size and the reduction rate of the move
limit. Based on past experience [24,25], the values of r
and ¢ are selected to be 10° and 0.9%~1 in the present
study, where N is a current iteration number. In order to
control the oscillation of the solution, a parameter 0.5° is
introduced in the move limit, where s is the number of
oscillations of the derivative 0w/00 that has taken place
before the current iteration. The value of s increases by 1
if the sign of 0w /060 changes. Whenever oscillation of the
solution occurs, the range of the move limit is reduced to
half of its current value. This expedites the solution
convergence rate very rapidly.
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(b) Optimal fundamental frequency o vs. L/r; ratio

Fig. 6. Effect of boundary conditions and L/r; ratio on optimal fiber
angle and optimal fundamental frequency of [+0/90,/0],,, laminated
truncated conical shells (r; = 10 cm, r, = 6 cm).

The 0w/00 term in Eq. (12a) may be approximated by

using a forward finite-difference method with the fol-
lowing form:
a0 A0 '
Hence, in order to determine the value of dw/06 nu-
merically, two finite element analyses to compute w(6))
and (0 + A0) are needed in each iteration. In this
study, the value of Af is selected to be 1° in most iter-
ations.

Fig. 3 shows the optimal fiber angle 0 and the asso-
ciated optimal fundamental frequency w with respect to
the L/ry ratio for thin ([+6/90,/0],,) laminated trun-
cated conical shells with various edge conditions and
with »,/r; = 0.6. From Fig. 3(a) we can see that the
optimal fiber angles 0 of the laminated truncated conical
shells seem not to be sensitive to the boundary condi-
tions. In addition, the optimal fiber angles 6 seem to be
fourth-order polynomials of L/ry ratio. Under the same
L/r| ratio, the SS shells usually have the largest values
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Fig. 7. Effect of boundary conditions and L/r; ratio on optimal fiber
angle and optimal fundamental frequency of [+£60/90,/0],,, laminated
truncated conical shells (r; = 10 cm, , = 8 cm).

for the optimal fiber angles and the FF shells usually
have the smallest values for the optimal fiber angles.
From Fig. 3(b), we can observe that the optimal fun-
damental frequency w generally decreases with the in-
creasing of L/r ratio and that the optimal fundamental
frequency w is also insensitive to the boundary condi-
tions. Nevertheless, among these shells under the same
geometric configuration, the FF shells have the highest
optimal fundamental frequencies, and the SS panels
have the lowest optimal fundamental frequencies. Al-
though, the optimal fundamental frequencies w for the
SF shells are slightly higher than those of the FS shells,
their differences are hard to distinguish. This is because
the influence of boundary conditions are small. Figs. 4
and 5 show the optimal fiber angle 6 and the associated
optimal fundamental frequency @ with respect to the
L/r, ratio for thin ([£6/90,/0],,) laminated truncated
conical shells with various edge conditions and with
r/r1 equal to 0.8 and 1, respectively. Comparing Fig.
4(a) and 5(a) with Fig. 3(a), we can find that the curves
of the optimal fiber angle 6 of the laminated truncated
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(b) Optimal fundamental frequency ® vs. L/r; ratio

Fig. 8. Effect of boundary conditions and L/r, ratio on optimal fiber
angle and optimal fundamental frequency of [+60/90,/0],,, laminated
truncated conical shells (r; = 10 cm, r, = 10 cm).

conical shells seem to ““shift” toward the right direction.
For example, the local maximum point at L/r; = 1.5 in
Fig. 3(a) shifts to the local maximum point at L/rj =2
in Fig. 4(a) and to the global maximum point at
L/ry = 2.5 in Fig. 5(a). The peak values of the optimal
fiber angle at the aforementioned local maximum/global
maximum points increase when the r,/r; ratio increases.
In addition, the range of the optimal fiber angle de-
creases with the increasing of the r,/r; ratio. For ex-
ample, 43°<0<66° when ry/r; =0.6,42°<0<62°
when 7, /r; = 0.8, and, 41° < 0 < 59" when r, /1, = 1. Fig.
4(b) and 5(b) show similar trend as Fig. 3(b) and it
seems that the optimal fundamental frequency  is not
influenced by the r,/r| ratio significantly.

Figs. 6-8 show the optimal fiber angle 6 and the as-
sociated optimal fundamental frequency o with respect
to the L/r ratio for thick ([+£60/90,/0],,) laminated
truncated conical shells with various edge conditions
and with »,/ry equal to 0.6, 0.8 and 1, respectively. From
Fig. 6(a) we can see that the optimal fiber angles 0 of the
laminated truncated conical shells seem to be second-
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Fig. 9. Fundamental vibration modes of [4+0/90,/0], laminated
truncated conical shells with two fixed ends and under optimal fiber
angles (1 = 10 cm, r, = 6 cm).
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Fig. 10. Fundamental vibration modes of [+6/90,/0] laminated

ns

truncated conical shells with two fixed ends and under optimal fiber
angles (r; = 10 cm, r, = 10 cm).

order polynomials of L/r; ratio. From Figs. 7(a) and
8(a), we can observe that the curves of the optimal fiber
angle have maximum points at L/r; = 1.5. Again, the
range of the optimal fiber angle 6 decreases with the
increasing of the r,/r; ratio. Comparing Figs. 6-8(a)
with Figs. 3-5(a), it can be seen that the shell thickness
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(a) Optimal fiber angle 0 vs. d/r ratio
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(b) Optimal fundamental frequency o vs. d/r; ratio

Fig. 11. Effect of boundary conditions and d/r| ratio on optimal fiber
angle and optimal fundamental frequency of [£60/90,/0],, laminated
truncated conical shells with central circular cutouts (r; = 10 cm,
r, =6 cm, L = 30 cm).

has significant influence on the optimal fiber angle 0.
Besides, the range of the optimal fiber angles for
[£0/90,/0],,, thick laminated truncated conical shells
are narrower than those of [+60/90,/0],, thin laminated
truncated conical shells. Figs. 6-8(b) show similar trend
as Figs. 3-5(b) except that the optimal fundamental
frequencies w for thick shells are higher than those of
thin shells.

Fig. 9 (r/r1 = 0.6) and Fig. 10 (r,/r; = 1) show the
typical fundamental vibration modes for both thin and
thick ([+£60/90,/0],, and [£6/90,/0],,,) shells with two
fixed ends and under the optimal fiber orientation. We
can find that when the L/, ratio or the shell thickness
increase, the vibration modes of these laminated trun-
cated conical shells have less waves in the circumferen-
tial direction. However, when the r,/r ratio increases
(i.e., approach cylindrical shell configuration), the vi-
bration modes of the shells may have more waves in the
circumferential direction. Similar results are also ob-
tained for shells with other boundary conditions [23].
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Fig. 12. Effect of boundary conditions and d/r| ratio on optimal fiber
angle and optimal fundamental frequency of [+£60/90,/0],,, laminated
truncated conical shells with central circular cutouts (r; = 10 cm,
r, =6 cm, L =30 cm).

5.2. Laminated truncated conical shells with various
central circular cutouts and boundary conditions

In this section, laminated truncated conical shells
with r; = 10 cm, 7, = 6 cm (r,/r; = 0.6) and L = 30 cm
(L/r1 = 3) are analyzed. These shells contain central
circular cutouts with diameter d varying between 0 and
12 cm (Fig. 2(b)). As before, two laminate layups,
[+£0/90,/0],, and [+0/90,/0],,,, are chosen for analysis.
In the previous section, it is shown that the results of
optimization are not sensitive to the boundary condi-
tions. Hence, in this section, only two types of boundary
conditions, FF and SS, are selected for analysis.

Fig. 11 shows the optimal fiber angle 6 and the as-
sociated optimal fundamental frequency w with respect
to the ratio d/r for thin ([£6/90,/0],,) laminated trun-
cated conical shells. From Fig. 11(a) we can see that the
optimal fiber angles 6 seem to be second-order polyno-
mials of d/r ratio. Under the same d/r ratio, the op-
timal fiber angles of the SS shells are usually greater
than those of the FF shells. Fig. 11(b) shows that under

d/n n=2 n=10

0.8

1.2

Fig. 13. Fundamental vibration mode of [+60/90,/0], laminated
truncated conical shells with central circular cutouts, with two fixed
ends and under optimal fiber angles (r, =10 cm, r», =6 cm, L =
30 cm).

the same d/r ratio, the optimal fundamental frequen-
cies of FF shell are higher than those of SS shells. When
the d/r ratio is less than 0.4, the optimal fundamental
frequencies of these shells decrease with the increase of
the cutout size. However, when the d/r| ratio is greater
than 0.4, the optimal fundamental frequencies increase
with the increasing of the cutout size. The phenomenon
that the fundamental frequencies increase with the in-
creasing of the cutout size might seem strange. However,
previous research did show that introducing a hole into
a composite structure does not always reduce the fun-
damental natural frequency and, in some instances, may
increase its fundamental natural frequency [24-28]. This
is because that the fundamental natural frequency of an
ordinary composite structure is not only influenced by
cutout, but also influenced by material orthotropy,
boundary condition, structural geometry, and their in-
teractions. Fig. 12 shows the optimal fiber angle 6 and
the associated optimal fundamental frequency w with
respect to the ratio d/r, for thick ([+60/90,/0],,,) lami-
nated truncated conical shells. Generally, Fig. 12(a)
shows the similar trend as Fig. 11(a) except that the
range of the optimal fiber angles for [£0/90,/0], thick
shells are narrower than those of [£0/90,/0], thin
shells. Fig. 12(b) also shows similar trend as Fig. 11(b).
However, the influence of boundary condition is more
prominent when the shell thickness becomes large.
Typical fundamental vibration modes for both thin
and thick ([£0/90,/0],, and [£0/90,/0],,) laminated
truncated conical shells with central circular cutouts,
with two fixed ends and under the optimal fiber orien-
tation are given in Fig. 13. It shows that when the cutout
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Fig. 14. Effect of boundary conditions and L/r| ratio on optimal fiber
angle and optimal fundamental frequency of [£60/90,/0],, laminated
truncated conical shells with a central circular cutout (+; = 10 cm,
r,=6cm, d =8 cm).

sizes are large, the fundamental vibration modes of the
shells tend to have more distortion around the hole.
Similar results are also obtained for shells with other
boundary conditions [23].

5.3. Laminated truncated conical shells containing central
circular cutouts with various lengths and boundary
conditions

In this section, laminated truncated conical shells
with 7, = 10 cm and », = 6 cm are analyzed. The length
of the shell, L, varies between 15 and 40 cm. These shells
contain central circular cutouts with diameter d = 8 cm
(Fig. 2(b)). As before, two types of boundary conditions,
FF and SS, and two laminate layups, [£6/90,/0],, and
[£0/90,/0],,,, are selected for analysis.

Figs. 14 and 15 show the optimal fiber angle 0 and the
associated optimal fundamental frequency w with re-
spect to the L/ry ratio for thin and thick ([6/90,/0],,
and [+£60/90,/0],,,) laminated truncated conical shells
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Fig. 15. Effect of boundary conditions and L/r| ratio on optimal fiber
angle and optimal fundamental frequency of [+6/90,/0],,, laminated
truncated conical shells with a central circular cutout (r; = 10 cm,
r=6cm, d =8 cm).

with central circular cutouts. For thin shells, it seems
that the optimal fiber angles 0 seem to be fourth-order
polynomials of L/r| ratio (Fig. 14(a)). For thick shells,
when L/ry ratio is small (say L/r < 3), the optimal fiber
angles seem to approach constant values (Fig. 15(a)).
Comparing Figs. 14 and 15(a) with Figs. 3 and 6(a), we
can see that the cutouts do have influence on the optimal
fiber angles of laminated truncated conical shells. This
influence is more significant for thin shells than that for
thick shells. From Figs. 14 and 15(b) we can see that for
both thin and thick shells containing central circular
cutout, their optimal fundamental frequencies decrease
with the increase of L/ry ratio. Again, the optimal fun-
damental frequencies seem not to be sensitive to the
boundary conditions, especially when the L/r ratio
becomes large.

Typical fundamental vibration modes for both thin
and thick ([£6/90,/0],, and [£0/90,/0],,) truncated
conical shells containing central circular cutouts with
two fixed ends and under optimal fiber orientations are
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L/ n=2 n=10

Fig. 16. Fundamental vibration mode of [+6/90,/0], laminated
truncated conical shells with central circular cutouts, with two fixed
ends and under optimal fiber angles (- = 10 cm, , = 6 cm, d = 8 cm).

given in Fig. 16. Comparing Fig. 16 with Fig. 9, we can
observe that the cutouts cause the fundamental vibra-
tion modes of shells to have significant distortion
around the hole area. This distortion is more significant
for thick shells than that for thin shells. When the L/r
ratios are large, the fundamental vibration modes of
shells seem to be less sensitive to the present of cutouts.
Similar results are also obtained for laminated truncated
conical shells with other boundary conditions [23].

6. Conclusions

For the optimal free vibration analysis of
[£6/90,/0],, and [+6/90,/0],,, laminated truncated
conical shells with various shell lengths, radius ratios,
circular cutouts and boundary conditions, the following
conclusions may be drawn:

1. The results of optimization of laminated truncated
conical shells are not sensitive to the boundary condi-
tions but are sensitive to the shell thickness and cen-
tral circular cutout.

2. The range of the optimal fiber angles 6 decrease with
the increasing of the r,/r ratio. In addition, the range
of the optimal fiber angles for thick laminated trun-
cated conical shells are narrower than those of thin
shells.

3. The optimal fundamental frequency w generally de-
creases with the increasing of L/ry ratio and the de-
creasing of shell thickness. In addition, the optimal
fundamental frequency w is not influenced by the
r,/ry ratio significantly.

4. The optimal fundamental frequencies of laminated
truncated conical shells may not decrease with the in-
crease of the cutout size.

5. When the L/r| ratio or the shell thickness increase,
the vibration modes of the laminated truncated coni-
cal shells have less waves in the circumferential direc-
tion. However, when the r,/r; ratio increases, the
vibration modes of the shells may have more waves
in the circumferential direction.

6. The cutouts cause the fundamental vibration modes
of truncated conical shells to have significant distor-
tion around the hole area, specially when the cutout
size is large. This distortion is more prominent for
thick shells than that for thin shells. When the L /7, ra-
tio is large, the fundamental vibration modes of shells
seem to be less sensitive to the present of cutouts.
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