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Maximization of the Fundamental Frequencies of Laminated
Curved Panels Against Fiber Orientation

Hsuan-Teh Hu* and Chin-Deng Juang†
National Cheng Kung University, Tainan, Taiwan, Republic of China

The fundamental frequencies of � ber-reinforced laminated curved panels with a given material system
are maximized with respect to � ber orientation by using a sequential linear programming method with
a simple move-limit strategy. The signi� cant in� uences of panel thickness, curvature, aspect ratio, cutouts,
and end conditions on the maximum fundamental frequencies and the associated optimal � ber orienta-
tions are demonstrated.

Introduction

T HE applications of � ber-composite laminate materials to
primary components in advanced structures such as space-

craft, high-speed aircraft, and satellites have increased rapidly
in recent years. Because many components of the aerospace
structures are made of curved panels, a knowledge of dynamic
characteristics of � ber-reinforced laminated panels, such as
their fundamental frequencies, is essential.1– 3

The fundamental frequencies of � ber-reinforced laminated
curved panels depend highly on ply orientations, end condi-
tions, and geometric variables such as panel curvature, thick-
ness, aspect ratio, and cutouts.4– 12 Therefore, for composite
panels with a given material system, geometric shape, thick-
ness and end condition, the proper selection of appropriate
lamination to maximize the fundamental frequency of the pan-
els becomes a crucial problem.13,14 However, in spite of the
high potential for improved dynamic performance by use of
composite optimization, there has not been much activity in
this area.15

Research on the subject of structural optimization has been
reported by many investigators.16 Among various optimization
schemes, the method of sequential linear programming has
been successfully applied to many large-scale structural prob-
lems.17,18 Hence, linearization of nonlinear optimization prob-
lems to meet requirements for iterative applications of a linear
programming method is one of the most popular approaches
to solve the structural optimization problem.

In this investigation, optimization of laminated curved pan-
els to maximize their fundamental frequencies with respect to
� ber orientations is performed by using a sequential linear pro-
gramming method together with a simple move-limit strategy.
The fundamental frequencies of laminated panels are calcu-
lated by using the ABAQUS � nite element program.19 In this
paper, the constitutive equations for � ber-composite laminate,
vibration analysis, and optimization method are brie� y re-
viewed. Then the in� uence of end condition, panel curvature,
thickness, aspect ratio, and cutouts on the optimal fundamental
frequency and the associated optimal � ber orientation of com-
posite panels is presented. Finally, important conclusions ob-
tained from the study are given.
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Constitutive Matrix for Fiber-Composite Laminae
In the � nite element analysis, the laminate panels are mod-

eled by eight-node isoparametric laminate shell elements with
six degrees of freedom per node (three displacements and three
rotations). The formulation of the shell allows transverse shear
deformation.19,20 These shear � exible shells can be used for
both thick- and thin-shell analyses.19

During the analysis, the constitutive matrices of composite
materials at element integration points must be calculated be-
fore the stiffness matrices are assembled from element level to
global level. For � ber-composite laminate materials, each lam-
ina can be considered as an orthotropic layer in a plane stress
condition (Fig. 1). The stress-strain relations for a lamina in
the material coordinates (1,2,3) at an element integration point
can be written as

{s9} = [Q9]{«9} (1)1

{t9} = [Q9]{g9} (2)2

E n E11 12 22
0

1 2 n n 1 2 n n12 21 12 21

n E E21 11 22[Q9] = (3)1 0F G1 2 n n 1 2 n n12 21 12 21

0 0 G12

a G 01 13[Q9] = (4)2 F G0 a G2 23

where {s9} = {s1, s2, t12}
T, {t9} = {t13, t23}

T, {«9} = {«1, «2,
g12}

T, {g9} = {g13, g23}
T. The a1 and a2 are shear correction

factors. In ABAQUS, the shear correction factors are calcu-
lated by assuming that the transverse shear energy through the
thickness of laminate is equal to that of unidirectional bend-
ing.19,21

The constitutive equations for the lamina in the element co-
ordinates (x, y, z) then become

T{s} = [Q ]{«}, [Q ] = [T ] [Q9][T ] (5)1 1 1 1 1

T{t} = [Q ]{g}, [Q ] = [T ] [Q9][T ] (6)2 2 2 2 2

2 2cos u sin u sin u cos u
2 2[T ] = sin u cos u 2sin u cos u1 F G

2 222 sin u cos u 2 sin u cos u cos u 2 sin u
(7)

cos u sin u
[T ] = (8)2 F G2sin u cos u
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Fig. 1 Material, element, and structure coordinates of � ber-com-
posite laminate curved panel.

where {s} = {sx, sy, txy}
T, {t} = {txz, tyz}

T, {«} = {«x, «y,
gxy}

T, {g} = {gxz, gyz}
T, and u is measured counterclockwise

about the z axis from the element local x axis to the material
1 axis. The element coordinate (x, y, z) is a curvilinear local
system (Fig. 1) that is different from the structural global co-
ordinate (X, Y, Z ). While the element x axis is parallel to the
straight edge of the curved panel, element y and z directions
are tangent and normal to the curved surface. Assume {«0} =
{«x0, «y0, gxy0}

T are the in-plane strains at the midsurface of the
laminate section and {k} = {kx, ky, kxy}

T are the curvatures.
The in-plane strains at a distance, z, from the midsurface be-
come

{«} = {« } 1 z{k} (9)0

If h is the total thickness of the section, the stress resultants
{N} = {Nx, Ny, Nxy}

T, {M} = {Mx, My, Mxy}
T, and {V} = {Vx,

Vy}
T can be de� ned as

h/2 h/2

{N} = {s} dz = [Q ]({« } 1 z{k}) dz (10)1 0E E
2h/2 2h/2

h/2 h/2

{M} = z{s} dz = z[Q ]({« } 1 z{k}) dz (11)1 0E E
2h/2 2h/2

h/2 h/2

{V} = {t} dz = [Q ]{g} dz (12)2E E
2h/2 2 h/2

If there are n layers in the layup, Eqs. (10), (11), and (12) can
be rewritten as a summation of integrals over the n laminae in
the following forms:

1 2 2(z 2 z )[Q ] (z 2 z )[Q ] [0]jt jb 1 jt jb 1
2

{N}
1 12 2 3 3{M} =H J (z 2 z )[Q ] (z 2 z )[Q ] [0]jt jb 1 jt jb 1F G2 3{V}

T T[0] [0] (z 2 z )[Q ]jt jb 2

{« }0
3 {k} (13)H J

{g}

where zjt and zjb are the distance from the midsurface of the
section to the top and the bottom of the jth layer, respectively.
The [0] is a 3 by 2 matrix with all of the coef� cients equal to
zero. Note that for a laminate section with a symmetric layup,
the extensional and the � exural terms in the constitutive matrix
(13) become uncoupled, i.e.,

n 0 0 01 2 2(z 2 z )[Q ] = 0 0 0 (14)jt jb 1O F G2j=1 0 0 0

Vibration Analysis
For the � nite element analysis of an undamped structure, if

there are no external forces, the equation of motion of the
structure can be written in the following form22:

¨[M]{D} 1 [K ]{D} = {0} (15)

where {D} is a vector containing the unrestrained nodal de-
grees of freedom, [M ] is a structural mass matrix, [K ] a struc-
tural stiffness matrix, and {0} is a zero vector. Because {D}
undergoes harmonic motion, the vectors {D} and {D̈} become

2¯ ¨ ¯{D} = {D}sin vt, {D} = 2v {D}sin vt (16)

where the {D̄} vector contains the amplitudes of the {D} vec-
tor and v is the frequency. Equation (15) can then be written
in an eigenvalue expression as

¯([K ] 2 l[M ]){D} = {0} (17)

where l = v2 is the eigenvalue and {D̄} becomes the eigen-
vector. In ABAQUS, a subspace iteration procedure23 is used
to solve for the eigenvalues, the natural frequency, and the
eigenvectors. The obtained smallest natural frequency (fun-
damental frequency) is then the objective function for maxi-
mization.

Sequential Linear Programming
A general optimization problem may be de� ned as the fol-

lowing:
maximize

f (x ) (18a)

subjected to

g (x ) # 0, i = 1, . . . , r (18b)i

h ( x ) = 0, j = r 1 1, . . . , m (18c)j

p # x # q , k = 1, . . . , n (18d)k k k

where is an objective function, are inequality con-f (x ) g (x )i

straints, are equality constraints, and = {x1, x2, . . . ,h ( x ) xj

xn}
T is a vector of design variables.

For the general optimization problem of Eqs. (18a – 18d), a
linearized problem may be constructed by approximating the
nonlinear functions about a current solution point, = {x01,x0

x02, . . . , x0n}
T, in a � rst-order Taylor-series expansion as fol-

lows:
maximize

Tf (x) = f ( x ) 1 = f ( x ) dx (19a)0 0

subjected to

Tg (x ) = g (x ) 1 =g (x ) dx # 0 (19b)i i 0 i 0

Th ( x ) = h (x ) 1 =h ( x ) dx = 0 (19c)j j 0 j 0

p # x # q (19d)k k k
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Fig. 2 Laminated curved panels with various end conditions: a)
SSSS, b) SFSF, c) FSFS, and d) FFFF panels.

where i = 1, . . . , r; j = r 1 1, . . . m; k = 1, . . . , n; = {x1dx
2 x01, x2 2 x02, . . . , xn 2 x0n}

T.
It is clear that Eqs. (19a – 19d) represent a linear programming

problem where variables are contained in the vector . A solu-dx
tion for Eqs. (19a – 19d) may be easily obtained by the simplex
method.24 After obtaining a solution of Eqs. (19a – 19d), say ,x1

we can linearize the original problem [Eqs. (18a– 18d)] at andx1

solve the new linear programming problem. The process is re-
peated until a precise solution is achieved. This approach is re-
ferred to as sequential linear programming.17,18

Although the procedure for a sequential linear programming is
simple, dif� culties may arise during the iterations. First, the op-
timum solution for the approximate linear problem may violate
the constraint conditions of the original optimization problem.
Second, in a nonlinear problem the true optimum solution may
appear between two constraint intersections. A straightforward
successive linearization may lead to an oscillation of the solution
between the widely separated values. Dif� culties in dealing with
such a problem may be avoided by imposing a move limit on
the linear approximation.17,18 The concept of a move limit is that
a set of box-like admissible constraints are placed in the range of

and it should gradually approach zero as the iterative processdx
continues. It is known that computational economy and accuracy
of the approximate solution may depend greatly on the choice of
the move limit. In general, the choice of a suitable move limit
depends on experience and also on the results of previous steps.

The algorithm of the sequential linear programming with
selected move limits may be summarized as follows:

1) Linearize the nonlinear objective function and associated
constraints with respect to an initial guess .x0

2) Impose move limits in the form of # 2 ) #2S (x x0

, where and are properly chosen lower and upper bounds.R S R
3) Solve the approximate linear programming problem to

obtain an optimum solution .x1

4) Repeat the procedures from 1 to 3 by rede� ning withx1

0 until either the subsequent solutions do not change signi� -x
cantly, i.e., true convergence, or the move limit approaches
zero, i.e., forced convergence. If the solution obtained is
caused by forced convergence, the procedures from 1 to 4
should be repeated with another initial guess.

Convergence Study
Prior to the numerical analysis, convergence study of the

shell element has been performed to analyze an isotropic
square plate with four simply supported edges. The thickness
of the plate is 0.001 m, and the length of one side of the plate
is 0.1 m. The material properties are E = 206 GPa, n = 0.3,
and r = 20.29 kg/m3. The analytical solution for the funda-
mental frequency of the plate is v = 60,188 s2 1. In the nu-
merical analysis, it is found that the use of 4 3 4 mesh (16
shell elements) to model the plate gives the same fundamental
frequency as the exact solution. On the basis of this result and
previous experience,25,26 it is decided to use at least 36 ele-
ments (6 3 6 mesh) to model the laminated cylindrical panels
having equal lengths in straight and curved edges. For panels
with large aspect ratios or with cutouts, more elements are
employed to model the entire structures.

Numerical Analysis
Laminated Cylindrical Panels with Various Curvatures
and End Conditions

In this section, composite-laminated cylindrical panels with
four types of end conditions (Fig. 2) are considered, which are
four edges simply supported (denoted by SSSS), two curved
edges simply supported and two straight edges � xed (denoted
by SFSF), two curved edges � xed and two straight edges sim-
ply supported (denoted by FSFS), and four edges � xed (de-
noted by FFFF). In Fig. 2, f is the circular angle of the curved
edges, and x, y, and z are the axial direction, the tangent di-

rection, and the normal direction of the panels, respectively.
The lengths of the straight edge, a, and the curved edge, b,
are all equal to 10 cm, and the circular angle f varies between
5 and 150 deg. The thickness of each ply is 0.125 mm. The
laminate layups of the plates are [6u/90/0]ns. To study the
in� uence of panel thickness on the results of optimization, n
= 2 (16-ply thin panel) and 10 (80-ply thick panel) are selected
for analysis. The lamina is composed of graphite/epoxy (Her-
cules AS/3501-6), and the material constitutive properties are
taken from Crawley,4 which are E11 = 128 GPa, E22 = 11 GPa,
n12 = 0.25, G12 = G13 = 4.48 GPa, G23 = 1.53 GPa, r = 1.5 3
103 kg/m3. In the � nite element analysis, no symmetry sim-
pli� cations are made for those panels.

Based on the sequential linear programming method, in
each iteration the current linearized optimization problem be-
comes
maximize:

­v
v(u) = v(u ) 1 (u 2 u ) (20a)0 0 U­u u =u0

subjected to:

0 # u # 90 deg (20b)

s s2r 3 q 3 0.5 # (u 2 u ) # r 3 q 3 0.5 (20c)0
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Fig. 4 Effect of end conditions and curvatures on a) optimal � ber
angle and b) optimal fundamental frequency of thick ([6u/90/0]10s)
laminated cylindrical panels (a /b = 1).

Fig. 3 Effect of end conditions and curvatures on a) optimal � ber
angle and b) optimal fundamental frequency of thin ([6u/90/0]2s)
laminated cylindrical panels (a /b = 1).

where v is the fundamental frequency. The u0 is a solution
obtained in the previous iteration. The r and q in Eq. (20c) are
the size and the reduction rate of the move limit. Based on
past experience,25,26 the values of r and q are selected to be 10
deg and in the present study, where N is a current(N21)0.9
iteration number. To control the oscillation of the solution, a
parameter 0.5s is introduced in the move limit, where s is the
number of oscillations of the derivative ­v/­u that has taken
place before the current iteration. The value of s increases by
1 if the sign of ­v /­u changes. Whenever oscillation of the
solution occurs, the range of the move limit is reduced to half
of its current value. This expedites the solution convergence
rate very rapidly.

The ­v/­u term in Eq. (20a) may be approximated by using
a forward � nite difference method with the following form:

­v [v(u 1 Du) 2 v(u )]0 0
= (21)

­u Du

Hence, to determine the value of ­v/­u numerically, two � nite
element analyses to compute v(u0) and v(u0 1 Du) are needed
in each iteration. In this study, the value of Du is selected to
be 1 deg in most iterations.

Figure 3 shows the optimal � ber angle u and the associated
optimal fundamental frequency v with respect to the circular
angle f for thin ([6u/90/0]2s) laminated cylindrical panels.
From Fig. 3a, we can see that when f is less than 60 deg, the
end conditions have a signi� cant in� uence on optimal � ber
angles of the panels. However, when f is greater than 60 deg,
the optimal � ber angles of these panels with different end con-
ditions seem to be very close and vary around 60 deg. Figure
3b shows that v increases with the increase of f. Among these
panels under the same geometric con� guration, the FFFF pan-
els have the highest optimal fundamental frequencies, and the
SSSS panels have the lowest optimal fundamental frequencies.
In addition, the optimal fundamental frequencies of SFSF pan-
els are very close to those of FFFF panels, and the optimal
fundamental frequencies of FSFS panels are very similar to
those of SSSS panels. This indicates the panels at this geo-
metric con� guration are governed by the boundary conditions
at the straight sides.

Figure 4 shows u and v with respect to f for thick ([6u/
90/0]10s) laminated cylindrical panels. Figure 4a shows that
when f is less than 30 deg, the end conditions have a signif-
icant in� uence on u of the panels. However, when f is greater
than 30 deg, the optimal � ber angles of these panels with dif-
ferent end conditions seem to be very close and gradually de-
crease with the increase of f. Comparing Fig. 4a with Fig. 3a,
we can observe that thickness has a signi� cant in� uence on
the optimal � ber angles of the cylindrical panels. From Fig.
4b we can observe that these thick panels are also governed
by the boundary conditions at the straight sides and v increases
with the increase of the panel curvature as thin panels.

Figure 5 shows the typical fundamental vibration modes for
both thin and thick ([6u/90/0]2s and [6u/90/0]10s) panels with
four � xed ends and under an optimal � ber orientation. We � nd
that as panel curvatures increase, the vibration modes of these
panels have more waves in the circumferential direction. Sim-
ilar results are also obtained for panels with other end condi-
tions.27

Laminated Cylindrical Panels with Various Aspect Ratios and
End Conditions

In this section, laminated cylindrical panels with various as-
pect ratios a /b are analyzed. The length of the curved edge b
is equal to 10 cm, and the length of the straight edge a varies
between 2 – 30 cm (Fig. 2). The circular angle f of these panels
is set to 60 deg. Four types of end conditions, i.e., SSSS, SFSF,
FSFS, and FFFF, described in a previous section, are consid-
ered. Again, the laminate layups, [6u/90/0]2s and [6u/90/0]10s,
are selected for analysis.

Figure 6 shows u and v with respect to the aspect ratio a/b
for thin ([6u/90/0]2s) laminated cylindrical panels. From Fig.
6a, we can see that the results of optimization for these panels
with different end conditions exhibit a similar trend. With an
increase of the aspect ratio a /b, the optimal � ber angles all
change from 0 to 90 deg. However, these transitional ranges
in the aspect ratio for SSSS and FSFS panels are wider than
those for SFSF and FFFF panels. The results in Fig. 6b show
that as a /b increases, the optimal fundamental frequencies of
these panels diminish to constant values. Generally, when the
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Fig. 5 Fundamental vibration mode of FFFF laminated cylindrical panels with [6u/90/0]ns layup and under optimal � ber angles (a/b
= 1).

Fig. 7 Effect of end conditions and aspect ratios on a) optimal
� ber angle and b) optimal fundamental frequency of thick ([6u/
90/0]10s) laminated cylindrical panels (f = 60 deg).

Fig. 6 Effect of end conditions and aspect ratios on a) optimal
� ber angle and b) optimal fundamental frequency of thin ([6u/
90/0]2s) laminated cylindrical panels (f = 60 deg).
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Fig. 8 Fundamental vibration mode of FFFF laminated cylindrical panels with [6u/90/0]ns layup and under optimal � ber angles (f =
60 deg).

Fig. 9 Laminated curved panels with central circular cutout.

Fig. 10 Effect of end conditions and cutout sizes on a) optimal
� ber angle and b) optimal fundamental frequency of thin ([6u/
90/0]2s) laminated cylindrical panels (a /b = 1, f = 60 deg).

aspect ratio is small, e.g., a/b < 0.5, the results of optimization
for SFSF panels are similar to those of SSSS panels, and the
results of optimization for FSFS panels are similar to those of
FFFF panels. However, when the aspect ratio is large, e.g.,
a/b > 1, the results of optimization for SFSF panels are similar
to those of FFFF panels and the results of optimization for
FSFS panels are similar to those of SSSS panels. This indicates
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Fig. 11 Effect of end conditions and cutout sizes on a) opti-
mal � ber angle and b) optimal fundamental frequency of thick
([6u/90/0]10s) laminated cylindrical panels (a /b = 1, f = 60
deg).

Fig. 12 Fundamental vibration mode of FFFF laminated cylindrical panels with [6u/90/0]ns layup, with circular cutouts and under
optimal � ber angles (a/b = 1, f = 60 deg).

that the panels are governed by the boundary conditions at the
curved sides for short panels and governed by the boundary
conditions at the straight edges for long panels.

Figure 7 shows u and v with respect to the aspect ratio a /
b for thick ([6u/90/0]10s) laminated cylindrical panels. Figure
7a indicates again that with an increase of the aspect ratio, the
optimal � ber angles of these panels all change from 0 to 90
deg. However, it seems that the in� uence of end conditions on
the optimal � ber angles gradually disappears as the thicknesses
of the panels are increased. Figure 7b shows a trend similar to
Fig. 6b, except that the values of the optimal fundamental fre-
quencies of thick panels are higher than those of thin panels.
Typical fundamental vibration modes for both thin and thick
([6u/90/0]2s and [6u/90/0]10s) panels with four � xed ends and
under optimal � ber orientations are given in Fig. 8.

Laminated Cylindrical Panels with Various Central Circular
Cutouts and End Conditions

In this section, laminated cylindrical panels with a = b = 10
cm, f = 60 deg are analyzed (Fig. 9). These panels contain
central circular cutouts with diameter d, which varies between
2 – 8 cm. As before, four types of end conditions and two lam-
inate layups, [6u/90/0]2s and [6u/90/0]10s, are selected for
analysis.

Figure 10 shows u and v with respect to the ratio d /b for
thin ([6u/90/0]2s) laminated cylindrical panels. From Fig. 10a,
it can be seen that these panels are governed by the boundary
conditions at the straight edges and the values of optimal � ber
angles of SFSF and FFFF panels are greater than those of
FSFS and SSSS panels. Figure 10b shows that when the cutout
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Fig. 13 Effect of end conditions and aspect ratios on a) optimal
� ber angle and b) optimal fundamental frequency of thin ([6u/
90/0]2s) laminated cylindrical panels containing cutout (d /b = 0.6,
f = 60 deg).

Fig. 14 Effect of end conditions and aspect ratios on a) optimal
� ber angle and b) optimal fundamental frequency of thick ([6u/
90/0]10s) laminated cylindrical panels containing cutout (d /b = 0.6,
f = 60 deg).

Fig. 15 Fundamental vibration mode of FFFF laminated cylindrical panels with [6u/90/0]ns layup, with circular cutouts and under
optimal � ber angles (d/b = 0.6, f = 60 deg).
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sizes are small, the optimal fundamental frequencies decrease
with the increase of the cutout sizes. However, when the cutout
sizes are large, e.g., d /b > 0.4 for SFSF and FFFF panels, and
d /b > 0.6 for FSFS and SSSS panels, the optimal fundamental
frequencies increase with the increase of the cutout sizes. This
is because a plate with a large cutout is more like four stubby
cantilevered plates. As a consequence, one could expect fre-
quencies to increase with d /b ratio.6,9,26

Figure 11 shows u and v with respect to the aspect ratio
d /b for thick ([6u/90/0]10s) laminated cylindrical panels. Fig-
ure 11a indicates that these thick panels are governed by the
boundary conditions at the straight edges and the values of
optimal � ber angles of SFSF and FFFF panels are greater than
those of FSFS and SSSS panels. Figure 11b shows that the
optimal fundamental frequencies decrease with the increase of
the cutout sizes for small d /b ratios and increase with the in-
crease of the cutout sizes for large d /b ratios.

Typical fundamental vibration modes for both thin and thick
([6u/90/0]2s and [6u/90/0]10s) panels with four � xed ends and
under optimal � ber orientations are given in Fig. 12. These
modes show that when the cutout sizes are small, the funda-
mental vibration modes are global, i.e., vibration of entire
panel. However, when the cutout sizes are large, the funda-
mental vibration modes are local, i.e., vibration of panel area
near hole. Similar results are also obtained for panels with
other end conditions.27

Laminated Cylindrical Panels Containing Central Circular
Cutouts with Various Aspect Ratios and End Conditions

In this section, laminated cylindrical panels with b = 10 cm,
f = 60 deg are analyzed (Fig. 9). The length of the straight
edge a varies between 10 – 40 cm. These panels contain central
circular cutouts with d = 6 cm. As before, four types of end
conditions, SSSS, SFSF, FSFS, FFFF, and two laminate layups,
[6u/90/0]2s and [6u/90/0]10s, are selected for analysis.

Figures 13 and 14 show u and v with respect to the aspect
ratio a/b for both thin and thick ([6u/90/0]2s and [6u/90/0]10s)
laminated cylindrical panels. Figures 13a and 14a show that,
generally, the optimal � ber angles increase with an increase of
panel aspect ratio. For SFSF and FFFF panels, the optimal
� ber angles are � xed to 90 deg when a/b ratios are large.
However, it seems that the optimal � ber angles for FSFS and
SSSS panels do not reach 90 deg, even for large a /b ratios.
Comparing Figs. 13a and 14a with Figs. 6a and 7a, we can
see that the cutouts have a signi� cant in� uence on the optimal
� ber angles of curved panels. From Figs. 13b and 14b we can
see that as a /b increases, the optimal fundamental frequencies
of these panels gradually decrease and diminish to constant
values.

Typical fundamental vibration modes for both thin and thick
([6u/90/0]2s and [6u/90/0]10s) panels with four � xed ends and
under optimal � ber orientations are given in Fig. 15. These
modes show that when the panel aspect ratios are small, the
fundamental vibration modes are global. However, when the
panel aspect ratios are large, the fundamental vibration modes
are local to the holes. Similar results are also obtained for
panels with other end conditions.27

Conclusions
In the process of sequential linear programming, most op-

timal results are obtained within 12 iterations, and the results
are all veri� ed by choosing different initial guesses. Hence,
the sequential linear programming is ef� cient and stable to
solve nonlinear optimization problems.

Generally, thicknesses, end conditions, curvatures, aspect ra-
tios, and circular cutouts have a signi� cant in� uence on the
optimal � ber angles and optimal fundamental frequencies of
[6u/90/0]ns laminated curved panels. To be more speci� c, the
following conclusions may be drawn:

1) The results of optimization for short laminated curved
panels are similar when they have the same boundary condi-

tions at the curved edges. However, the results of optimization
for long panels are similar when they have the same boundary
conditions at the straight sides. For curved panels without cut-
outs, the in� uence of end conditions on the optimal � ber an-
gles gradually disappears as the thicknesses of the panels are
increased.

2) The optimal fundamental frequency of the curved panel
increases with the increasing of panel curvature. In addition,
the vibration mode of the panel would have more waves in
the circumferential direction if the panel curvature was in-
creased.

3) When the panel aspect ratio becomes large, the optimal
� ber angles for laminated curved panels with and without cut-
outs gradually approach 90 deg, except those panels with cut-
outs and with FSFS and SSSS ends. Nevertheless, the optimal
fundamental frequencies of the panels will be reduced and di-
minish to constant values as the aspect ratio becomes large.

4) The introduction of cutouts may increase the optimal fun-
damental frequencies of laminated curved panels, and the op-
timal fundamental frequencies of curved panels may increase
with the increase of the sizes of cutouts. When the cutout sizes
are small, the fundamental vibration modes are global. How-
ever, when the cutout sizes are large, the fundamental vibration
modes are local to the holes.

5) For laminated curved panels with � xed cutout size, when
the panel aspect ratios are small, the fundamental vibration
modes may be global. However, when the panel aspect ratios
are large, the fundamental vibration modes may be local to the
holes.
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