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ABSTRACT: The fundamental natural frequency of rectangular symmetrically lami-
nated plates with a given material system is maximized with respect to fiber orientations
by using a sequential linear programming method together with a simple move-limit strat-
egy. Significant influence of plate thickness, aspect ratio, circular cutout and end condi-
tions on the optimal fiber orientations and the associated optimal fundamental natural
frequency of fiber-reinforced laminated composite plates has been shown through this
investigation.

1. INTRODUCTION

THE APPLICATIONS OF fiber-composite laminate materials to primary com-
ponents in advanced structures such as spacecraft, high-speed aircraft, and
satellite, have increased rapidly in recent years. Since most major components of
the aerospace structures are made of plates, a knowledge of dynamic characteris-
tics of fiber-reinforced laminated composite plates, such as their fundamental
natural frequency, is essential [1-3].

The fundamental natural frequency of fiber-reinforced laminated composite
plate highly depends on end conditions [4], lamination parameters such as ply
orientations [5-7], and geometric variables such as aspect ratio, thickness and
cutout [8-11]. Therefore, for composite plates with a given material system, geo-
metric shape, thickness and end condition, the proper selection of appropriate
lamination to maximize the fundamental natural frequency of the plates becomes
a crucial problem. However, in spite of the high potential for improved dynamic
performance by use of composite optimization, there has not been very much
activity in this area [12].
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Research on the subject of structural optimization has been reported by many
investigators [13]. Among various optimization schemes, the method of sequen-
tial linear programming has been successfully applied to many large scale struc-
tural problems [14-15]. Hence, linearization of nonlinear optimization problems
to meet requirements for iterative applications of a linear programming method
is one of the most popular approaches to solve the structural optimization
problem.

In this investigation, optimization of symmetrically laminated plates for their
fundamental natural frequencies with respect to fiber orientations is performed
by using a sequential linear programming method together with a simple move-
limit strategy. The fundamental natural frequencies of composite plates are
calculated by using the ABAQUS finite element program [16]. In the paper, the
constitutive equations for fiber-composite laminate, vibration analysis and op-
timization method are briefly reviewed. Then, the influence of end conditions,
plate thicknesses, aspect ratios, and cutouts on the optimal fiber orientations and
the optimal fundamental natural frequencies of composite plates is presented.
Finally, important conclusions obtained from the study are given.

2. CONSTITUTIVE MATRIX FOR FIBER-COMPOSITE LAMINAE

In the finite element analysis, the laminate plates are modeled by eight-node
isoparametric laminate shell elements with six degrees of freedom per node
(three displacements and three rotations). The formulation of the shell allows
transverse shear deformation [16-17]. These shear flexible shells can be used for
both thick and thin shell analyses [16].

During the analysis, the constitutive matrices of composite materials at ele-
ment integration points must be calculated before the stiffness matrices are
assembled from element level to global level. For fiber-composite laminate
materials, each lamina can be considered as an orthotropic layer in a plane stress
condition (Figure 1). The stress-strain relations for a lamina in the material coor-
dinates (1,2,3) at an integration point can be written as

{o’} = [Qi1{e’} ¢))
{7’} = [Q:]lv/} )
E,, vi2E2,
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Figure 1. Material and element coordinate systems for fiber-composite laminate.

where {0’} = {0,,0:,7)5,{t/} = {113,73)", €'} = ler,e2,72)". 17/} = (713,
v23)7. The o, and «, are shear correction factors. In ABAQUS, the shear correc-
tion factors are calculated by assuming that the transverse shear energy through
the thickness of laminate is equal to that of unidirectional bending [16,18].

The constitutive equations for the lamina in the element coordinates (x,y,z)
then become

{o} = [Qille}, (0] = [TL)T[Q/]ITi] ®)]
{rd = [Q:1lvdds [Q.] = [T)[Q;]IT3] (6)
cos? ¢ sin? ¢ sin ¢ cos ¢
[T\] = sin? ¢ cos? ¢ —sin ¢ cos ¢ @)
—2singpcos¢ 2sin¢dcosd cos® ¢ — sin® @
cos ¢ sin ¢
(T3 = | _gin ¢ cosé ®

where {0} = [0,,0’, ,T,,.]T,{T,} = {1, aTyz}Tv{f} = {fx €y 9'ny}T»['Yr} = {'Yx: "sz}T’
and ¢ is measured counterclockwise from the element local x-axis to the material
1-axis. Assume {eo} = {€.0,6,0,7x0)7 are the in-plane strains at the mid-surface
of the laminate section and {x} = {x.,x,,x,)T are the curvatures. The in-plane
strains at a distance, z, from the mid-surface become

(e} = feo} + z{x} )

If h is the total thickness of the section, the stress resultants, {N} = {N., N,,
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N, (M} = (M, M, ,M_}" and {V} = {V,,V,}7, can be defined as

A2 ph/2
NV} = s {o}dz = [@:)(leo} + z{x})dz (10
—hi2 J -h2
2 o h/2
M} = sl oldz = z[Qi)({eo} + zix})dz 1n
—h2 J —h2
A2 hI2
vy = s {rdz = s [Q2){v.}dz (12)
—hi2 —h2

If there are n layers in the layup, the above equations can be rewritten as a sum-
mation of integrals over the n laminae in the following forms:

1
N} (e — zp)[Q1] 5 (% — z3)[Q1] [0] {€o}
M} = Z:] %(Z}» = )01l %(Zf-t — z2)[04] [0] {x} (13)
Vi [01* (01" (e — zw)[Q:]]| e}

where z;, and z;, are the distance from the mid-surface of the section to the top
and the bottom of the jth layer respectively. The [0] is a 3 by 2 matrix with all
the coefficients equal to zero. It should be noted that for laminate section with
symmetric layup, the extensional and the flexural terms in the constitutive matrix
[Equation (13)] become uncoupled, i.e.,

2 000
L5 @ - zed = 000 (14)
j=1 000

3. VIBRATION ANALYSIS

For the finite-element analysis of an undamped structure, if there are no exter-
nal forces, the equation of motion of the structure can be written in the following
form [19]:

[MID} + [K1(D} = (0} (15)
where (D} is a vector containing the unrestrained nodal degrees of freedoms,

[M] a structural mass matrix, [K] a structural stiffness matrix, and 0} a zero
vector. Since {D} undergoes harmonic motion, the vectors {D} and {D} become
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(D} = {D} sin wt; {D} = —w*D} sin wt (16)

where {D} vector contains the amplitudes of {D} vector and w is the frequency.
Then Equation (15) can be written in an eigenvalue expression as

(K] — NMD(D} = {0} a7

where A = w? is the eigenvalue and {D} becomes the eigenvector. In ABAQUS,
a subspace iteration procedure [20] is used to solve for the eigenvalues, the
natural frequency, and the eigenvectors. The obtained smallest natural frequency
(fundamental natural frequency) is then the objective function for maximization.

4. SEQUENTIAL LINEAR PROGRAMMING

A general optimization problem may be defined as the following:

Maximize:
f) (18a)
Subjected to:
gx) =0, i=1,...r (18b)
hx) =0, j=r+1,....m (18¢)
Ph<xi<q, k=1,...n (18d)

where f(x) is an objective function, g.(x) are inequality constraints, h;(x) are
equality constraints, and x = {x,X;, . . ,X.}7 is a vector of design variables.

For the general optimization problem of Equations (18a)-(18d), a linearized
problem may be constructed by approximating the nonlinear functions about a
current solution point, xo = {Xo1,X02, - - -,Xoa}", in a first-order Taylor series
expansion as follows

Maximize
f@ = fxo) + Vf(xo)"ox (19a)
Subjected to
8@ = g:i(x) + Vgi(x0)0x = 0 (19b)
B (X)) = h;(x0) + Vh;(xo)"8x = 0 (19¢)
P < X = qu (19d)
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where i =1,....,r, j=r+1,..m =1...,n & =[x — X,
X2 = Xozs -« 5 Xn — xo:.]T~

It is clear that Equations (19a)-(19d) represent a linear programming problem
where variables are contained in the vector dx. A solution for Equations
(192)-(19d) may be easily obtained by the simplex method [21]. After obtaining
a solution of Equations (19a)-(19d), say x,, we can linearize the original prob-
lem, Equations (18a)-(18d), at x, and solve the new linear programming prob-
lem. The process is repeated until a precise solution is achieved. This approach
is referred to as sequential linear programming [14-15].

Although the procedure for a sequential linear programming is simple, difficul-
ties may arise during the iterations. First, the optimum solution for the approx-
imate linear problem may violate the constraint conditions of the original op-
timization problem. Second, in a nonlinear problem, the true optimum solution
may appear between two constraint intersections. A straightforward successive
linearization may lead to an oscillation of the solution between the widely sepa-
rated values. Difficulties in dealing with such a problem may be avoided by
imposing a “move limit” on the linear approximation [14-15]. The concept of a
move limit is that a set of box-like admissible constraints are placed in the range
of dx and it should gradually approach zero as the iterative process continues. It
is known that computational economy and accuracy of the approximate solution
may depend greatly on the choice of the move limit. In general, the choice of a
suitable move limit depends on experience and also on the results of previous
steps.

The algorithm of the sequential linear programming with selected move limits
may be summarized as follows:

1. Linearize the nonlinear objective function and associated constraints with
respect to an initial guess x,.

2. Impose move limits in the form of —§ < (x — x,) < R, where S and R
are properly chosen lower and upper bounds.

3. Solve the approximate linear programming problem to obtain an optimum
solution x, .

4. Repeat the procedures from (1) to (3) by redefining x, with x, until either the
subsequent solutions do not change significantly (i.e., true convergence) or
the move limit approaches zero (i.e., forced convergence). If the solution ob-
tained is due to forced convergence, the procedures from (1) to (4) should be
repeated with another initial guess.

5. NUMERICAL ANALYSIS

5.1 Rectangular Laminate Plates with Various Aspect Ratios
and End Conditions

In this section composite laminate rectangular plates with three types of end
conditions are considered, which are two edges simply supported (denoted by S)
and two edges fixed (denoted by F), four edges simply supported, and four edges
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Figure 2. Composite plates with (a) two simply supported ends and two fixed ends, (b) four
simply supported ends, and (c) four fixed ends.

fixed (Figure 2). The width of the plates, b, is 10 cm and the length of the plates,
a, are varied between 5 cm and 30 cm. The thickness of each ply is 0.125 mm.
The laminate layups of the plates are [ +6/90/0],.,. In order to study the influence
of plate thickness on the results of optimization, n = 2 (16-plies thin plate) and
10 (80-plies thick plate) are selected for analysis. The lamina is consisted of
Graphite/Epoxy (Hercules AS/3501-6) and material constitutive properties are
taken from Crawley [6], which are E,, = 128 GPa, E,, = 11 GPa, v,; = 0.25,
G, = G;3 = 448 GPa, G,; = 1.53 GPa, ¢ = 1.5 x 10° kg/m?. In the finite
element analysis, no symmetry simplifications are made. A typical first vibration
mode for [+40/90/0],, rectangular laminate plate with a/b = 2 and with two
simply supported ends and two fixed ends is shown in Figure 3(a).

Based on the sequential linear programming method, in each iteration the
current linearized optimization problem becomes:

Maximize

6o

Downloaded from http://jrp.sagepub.com at National Cheng Kung Univ. on February 5, 2009


http://jrp.sagepub.com

884 HsuaN-TEH HU AND MIN-HEA Ho
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(a) Rectangular plate (a/b = 2). @ = 7736 rad/sec

(c) Rectangular plate (b = 2, d/b = 0.4). 0 = 8246 rad/sec

Figure 3. Typical first vibration modes of [+ 40/90/0],s composite plates with two simply
supported ends and two fixed ends.

Subjected to
0° =6 < 90° (20b)
-rxgx05=<@-96)=<rxgqgx05 (20c)

where w is the fundamental natural frequency. The 6, is a solution obtained in the
previous iteration. The r and g in Equation (20c) are the size and the reduction
rate of the move limit. In the present study, the values of r and g are selected to
be 20° and 0.9¥-V), where N is a current iteration number. In order to control the
oscillation of the solution, a parameter 0.5¢ is introduced in the move limit, where
s is the number of oscillation of the derivative dw/d6 that has taken place before
the current iteration. The value of s increases by 1 if the sign of dw/38 changes.
Whenever oscillation of the solution occurs, the range of the move limit is
reduced to half of its current value, which is similar to a bisection method [22].
This expedites the solution convergent rate very rapidly.
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The dw/36 term in Equation (20a) may be approximated by using a forward
finite-difference method with the following form:

dw  [w(l + AG) — w(bo)]
8 = A @D
Hence, in order to determine the value of dw/36 numerically, two finite element
analyses to compute w(fo) and w(f, + Af) are needed in each iteration. In this
study, the value of Af is selected to be 1° in most iterations.

Figure 4 shows the optimal fiber angle 8 and the associated optimal fundamen-
tal natural frequency w with respect to the plate aspect ratio a/b for [ +6/90/0],,
rectangular composite plates. From Figure 4(a), we can see that the results of
optimization for these plates with different end conditions exhibit similar trends.
With the increasing of the plate aspect ratio a/b, the optimal fiber angles all
change from 0° to 90°. However, this transitional range in the aspect ratio is the
widest for plates with four simply supported ends (say 0.5 < a/b < 1.8), and
the narrowest for plates with four fixed ends (say a/b around 1). The results in
Figure 4(b) show that the effect of end conditions on the optimal fundamental
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Figure 4. Effect of end conditions and plate aspect ratios on optimal fiber angle and optimal
fundamental natural frequency of [+ 6/90/0]»s rectangular composite plates.

Downloaded from http://jrp.sagepub.com at National Cheng Kung Univ. on February 5, 2009


http://jrp.sagepub.com

886 HSUAN-TEH Hu AND MIN-HEA Ho

90 T

PN T A

ROk ! / .
a0t L« :
Zoo00f A 1
Z sof l A;'/" ]
= 4ot lfil/ —8—SFSF ]
_ 30p : - A-SSSS
T oaof S --%-FFFF ]
10 F A : ]

0 mdmaok : : .
0 0.5 | 1.5 2 2.5 3

al/b

(@) Aspect ratio a/b vs. optimal fiber angle 6

100 o . ; . .
90 F -
30 F ]
sol : —8— SFSF

60
SO

— 4 = SS88S

o (k rad/sec)

10k ]
30 b - %
10 L L r A & a4 +
0 0.5 | 1.5 2 2.5 3
a/b
(b) Aspect ratio a/b vs. optimal fundamental natural frequency ©

Figure 5. Effect of end conditions and plate aspect ratios on optimal fiber angle and optimal
fundamental natural frequency of [+ 6/90/0], rectangular composite plates.

natural frequencies are more pronounced for values with a/b < 1. As a/b in-
creases, the optimal fundamental natural frequencies attenuate to constant values.
Overall, the highest optimal fundamental natural frequencies are exhibited by the
plates with four fixed ends and the lowest by those with four simply support ends,
which is consistent with the trend exhibited by corresponding plates with a fixed
value of §. When a/b ratio is small, the optimal fundamental natural frequencies
of plates with two simply supported ends and two fixed ends are similar to those
of plates with four simply supported ends. However, when a/b ratio is large, they
are close to those of plates with four fixed ends.

Figure 5 shows the optimal fiber angle 8 and the associated optimal fundamen-
tal natural frequency versus the plate aspect ratio a/b for [ +6/90/0],, rectangular
composite plates. Comparing Figure 5(a) with Figure 4(a), we can observe that
the optimal fiber orientations of the thick plates with four simply supported ends
and with four fixed ends are almost the same as those of thin plates with corre-
sponding end conditions. The plate thickness only has some influence on plates
with two simply supported ends and two fixed ends. Figure 5(b) of thick plates
shows the similar trend as Figure 4(b) of thin plates, except the values of the opti-
mal fundamental natural frequencies for thick plates are much higher than those
of thin plates.
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5.2 Square Laminate Plates with Various Central Circular Cutouts
and End Conditions

In this section, composite laminate square plates with a central circular cutout
as shown in Figure 6(a) are analyzed. The length of the plates, a, is set to 10 cm
and the diameter of the cutout, d, are varied between 1 cm and 8 cm. Three types
of end conditions, i.e., SFSF, SSSS, and FFFF, similar to those in previous
section are considered. Again, the laminate layups, [+6/90/0],, and
[£60/90/0],0s, are selected for analysis. A typical first vibration mode for
[+£40/90/0],, square laminate plate with d/a = 0.5 and with two simply sup-
ported ends and two fixed ends is shown in Figure 3(b).

Figure 7 shows the optimal fiber angle 8 and the associated optimal fundamen-
tal natural frequency versus the ratio d/a for [ £ 6/90/0],, square composite plates.
From Figure 7(a), we can see that the optimal fiber orientations of the plates with
four simply supported ends are insensitive to the sizes of cutouts and always re-
main 45°. Nevertheless, the optimal fiber orientations of the plates with four
fixed ends and with two simply supported end and two fixed ends show significant
sensitivity to the sizes of cutouts, and it seems that when the holes become large,
these optimal fiber angles gradually approach to 45°. Figure 7(b) shows that the
optimal fundamental natural frequencies increase with the increase of the sizes of
cutouts for plates with different end conditions. This phenomenon is quite
different from our intuition that introducing a large hole into a plate can cause a

(a) Square plates

a

'y
y

(b) Rectangular plates
Figure 6. Composite plates with a circular cutout at center.

Downloaded from http://jrp.sagepub.com at National Cheng Kung Univ. on February 5, 2009


http://jrp.sagepub.com

888 HsUAN-TEH Hu AND MIN-HEA Ho

YOE
80
70
60
50
4()"-
30
20
10

0 (degrees)

d/a
(a) d/a vs. optimal fiber angle 6

o (k rad/sec)

d/a
(b) d/a vs. vs. optimal fundamental natural frequency w

Figure 7. Effect of end conditions and cutouts on optimal fiber angle and optimal fundamen-
tal natural frequency of [+6/90/0],, square composite plates with circular cutouts.

reduction in the fundamental natural frequency of the plate. However, past
research did show that introducing a hole into a composite plate does not always
reduce the fundamental natural frequency and, in some instances, may increase
its fundamental natural frequency [23,24]. This is because that the fundamental
natural frequency of a composite plate is not only influenced by cutout, but also
influenced by material orthotropy, end condition, and plate geometry.

Figure 8 shows the optimal fiber angle 6 and the associated optimal fundamen-
tal natural frequency with respect to the d/a ratio for [ +6/90/0],,, square com-
posite plates. From Figure 8(a), we can see that only the optimal fiber angles of
plates with two simply supported ends and two fixed ends are sensitive to the
sizes of cutouts. From Figure 8(b) we can again observe that the optimal funda-
mental natural frequencies of thick plates increase with the increase of the sizes
of cutouts.

Comparing Figure 8 with Figure 7, we can observe that the plate thickness only
affects the optimal fiber orientations of plates with four fixed ends. It has very lit-
tle influence on the optimal fiber orientations of plates with four simply sup-
ported ends and with two simply supported ends and two fixed ends. In addition,
the values of the optimal fundamental natural frequencies for thick plates are
much higher than those of thin plates.
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5.3 Rectangular Laminate Plates Containing a Central Circular Cutout
with Various Aspect Ratios and End Conditions

In this section composite laminate rectangular plates with a central circular
cutout as shown in Figure 6(c) are analyzed. The width of the plates, b, is 10 cm,
the length of the plates, a, varies between 5 cm and 40 cm, and the diameter of
the cutout, d, is selected to be 4 cm. Again, three types of end conditions, SFSF,
SSSS, and FFFF, and two types of laminate layups, [+6/90/0],, and
[£60/90/0],0s, are selected for analysis. A typical first vibration mode for
[ +£40/90/0],, rectangular laminate plate with a/b = 2, d/b = 0.4, and with two
simply supported ends and two fixed ends is shown in Figure 3(c).

Figures 9 and 10 shows the optimal fiber angle and the associated optimal
fundamental frequency versus the plate aspect ratio a/b for [+6/90/0],, and
[£60/90/0],,, rectangular composite plates with a central circular cutout. From
Figures 9(a) and 10(a) we can see that the results of optimization for these plates
with different end conditions exhibit similar trends. When the plate aspect ratios
are increased, the optimal fiber angles of these plates all change from minimum
values to 90°. Similar to the rectangular plates without cutouts, the transitional
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Figure 8. Effect of end conditions and cutouts on optimal fiber angle and optimal fundamen-
tal natural frequency of [+60/90/0]:0s SqQuare composite plates with circular cutouts.
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Figure 9. Effect of end conditions and plate aspect ratios on optimal fiber angle and optimal
fundamental natural frequency of [+6/90/0], rectangular composite plates with circular
cutouts.

range in the aspect ratio is the widest for plates with four simply supported ends,
and the narrowest for plates with four fixed ends. Comparing Figure 9(a) with
Figure 10(a), we can observe that the plate thickness has almost no influence on
the optimal fiber angles of plates with four fixed ends. The plate thickness only
has influence on the optimal fiber angles of plates with two simply supported
ends and two fixed ends for a/b below 1, and of plates with four simply supported
ends for a/b around 3.

Comparing Figure 9(a) with Figure 4(a), we can see that the cutout has signifi-
cant influence on the optimal fiber angles of thin plates with four simply sup-
ported ends and with two simply supported ends and two fixed ends. However,
the cutout has no influence on the optimal fiber angles of thin plates with four
fixed ends. Similar results can be observed for thick plates if we compare Figure
10(a) with Figure 5(a). By comparing Figure 9(b) with Figure 4(b), or Figure
10(b) with Figure S5(b), we can see that the introduction of cutout generally
increases the optimal fundamental frequencies of rectangular composite plates.

6. CONCLUSIONS

From the optimization analysis of freely vibrated laminated plates with various
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plate thicknesses, aspect ratios, circular cutouts and end conditions, the following
conclusions may be drawn:

1. The end conditions has significant influence on the optimal fiber angles and
optimal fundamental frequencies of rectangular and square laminated plates
with and without cutouts.

2. When the aspect ratio becomes large, the optimal fiber angles for rectangular
laminated plates with and without cutouts gradually approach to 90°, and the
optimal fundamental frequencies attenuate to constant values.

3. The cutout has significant influence on the optimal fiber angles of thin and
thick rectangular laminated plates with four simply supported ends and with
two simply supported ends and two fixed ends. However, the cutout has no
influence on the optimal fiber angles of plates with four fixed ends.

4. For square laminate thin plates, the optimal fiber orientations are insensitive
to the sizes of cutouts for plates with four simply supported ends only. For
square laminate thick plates, the optimal fiber angles are sensitive to the sizes
of cutouts for plates with two simply supported ends and two fixed ends only.
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Figure 10. Effect of end conditions and plate aspect ratios on optimal fiber angle and opti-

mal fundamental natural frequency of [+ 6/90/0]10s rectangular composite plates with circu-
lar cutouts.
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14.

15.

16.

17.

18.

19.

20.

21.

The introduction of cutout may increase the optimal fundamental frequencies
of rectangular laminate plates and the optimal fundamental frequencies of
square laminate plates may increase with the increase of the sizes of cutouts.
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