
ELSEVIER 

Composites Science and Technology 55 (1995) 277-285 

0 1995 Elsevier Science Limited 

0266-3538(95)00105-O 

Printed in Northern Ireland. All rights reserved 

0266-3538/95/$09.50 

BUCKLING OPTIMIZATION OF SYMMETRICALLY 
LAMINATED PLATES WITH VARIOUS GEOMETRIES 

AND END CONDITIONS 

Hsuan-Teh Hu & Bor-Horng Lin 

Department of Civil Engineering, National Cheng Kung University, I University 

(Received 17 March 1995; revised version reef :ived 26 May 1995; accepted 31 July 1995) 

Abstract 
The buckling resistance of symmetrically laminated 
plates with a given material system and subjected to 
uniaxial compression is maximized with respect to fiber 
orientations by using a sequential linear programming 
method together with a simple move-limit strategy. 
Significant influence of plate thicknesses, aspect ratios, 
central circular cutouts and end conditions on the 
optimal fiber orientations and the associated optimal 
buckling loads of symmetrically laminated plates are 
shown. 

requirements for iterative applications of a linear 
programming method is one of the most popular 
approaches to solving the structural optimization 
problem. 

Keywords: buckling, optimization, symmetrically lam- 
inated plates, end conditions, sequential linear 
programming 

1 INTRODUCTION 

The use of fiber-reinforced laminated composite plates 
in aerospace structures has increased rapidly in recent 
years. The composite plates in service are commonly 
subjected to various kinds of compression which may 
cause buckling. Hence, structural instability becomes a 
major concern in safe and reliable design of the 
composite plates. The buckling resistance of compos- 
ite laminate plates depends on end conditions, 
lamination parameters such as ply orientations,‘4 and 
geometric variables such as aspect ratios, thicknesses 
and cutouts.3,s4 Therefore, for composite plates with 
a given material system, geometric shape, thickness 
and end condition, the proper selection of appropriate 
lamination to achieve maximum buckling resistance 
becomes a crucial problem. 

In the present investigation, buckling optimization 
of symmetrically laminated plates with respect to fiber 
orientations is performed by using a sequential linear 
programming method together with a simple move- 
limit strategy. The critical buckling loads of composite 
plates are calculated by the bifurcation buckling 
analysis implemented in the ABAQUS finite element 
program.i* In the present paper, the bifurcation 
buckling analysis, the constitutive equations for 
fiber-composite laminate and the optimization method 
are briefly reviewed first. Then the influence of end 
conditions, plate thicknesses, aspect ratios, and 
cutouts on the optimal fiber orientations and the 
associated optimal buckling loads of composite plates 
is presented. Finally, important conclusions obtained 
from this study are given. 

2 BIFURCATION BUCKLING ANALYSIS 

In the finite element analysis, a system of non-linear 
algebraic equations results in the incremental form: 

[Kl4u) = dip) 

where [K,] is the tangent stiffness matrix, d(u) the 
incremental nodal displacement vector and d(p) the 
incremental nodal force vector. 

Research on the subject of structural optimization 
has been reported previously.” Among various 
optimization schemes, the method of sequential linear 
programming has been successfully applied to many 
large-scale structural problems.‘O~” Hence, lineariza- 
tion of non-linear optimization problems to meet 

Within the range of elastic behavior, it is known 
that when the deformation of a structure is small, the 
non-linear theory leads to the same critical load as the 
linear theory.13,i4 Consequently, if only the buckling 
load is to be determined, the calculation can be 
greatly simplified by assuming the deformation to be 
small and we can neglect the non-linear terms which 
are functions of nodal displacements in the tangent 
stiffness matrix. The linearized formulation then gives 
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rise to a tangent stiffness matrix in the following 
expression:15 

[Kl = WLI + PC71 (2) 
where [K,] is a linear stiffness matrix and [K,] a stress 
stiffness matrix. If a stress stiffness matrix [KVlref is 
generated according to a reference load {~}~~r, for 
another load level {p} (with h being a scalar 
multiplier), we have: 

{P] = G],& Kl = WGlref (3) 

When buckling occurs, the external loads do not 
change, i.e. d(p) = 0. Then the bifurcation solution for 
the linearized buckling problem may be determined 
from the following eigenvalue equation: 

WLI + &r[~,l,,,kG~ = 0 (4) 
where h,, is an eigenvalue and d(u) becomes the 
eigenvector defining the buckling mode. The critical 
load {p},, can be obtained from {P}~, = &{~}~~r. In 
ABAQUS, a subspace iteration procedurel’j is used to 
solve for the eigenvalues and eigenvectors. 

3 CONSTITUTIVE MATRIX FOR FIBER- 
COMPOSITE LAMINAE 

In finite element analysis, the laminate plates are 
modeled by eight-node isoparametric laminate shell 
elements with six degrees of freedom per node (three 
displacements and three rotations). The formulation 
of the shell allows transverse shear deformation.12,‘7 
These shear flexible shells can be used for both thick 
and thin shell app1ications.r’ 

During the analysis, the constitutive matrices of 
composite materials at element integration points 
must be calculated before the stiffness matrices are 
assembled from element level to global level. For 
fiber-composite laminate materials, each lamina can 
be considered as an orthotropic layer. The 
stress/strain relationships for a lamina in the material 
coordinates (1,2,3) (Fig. 1) at an element integration 
point can be written as: 

(4 = [QJE’); 

[Qil = 

(2’) = [Q,‘l{r’>; [Q2’1= [ a1;3a ; ] (6) 
2 23 

where WI= h, u2, r12jT, {z’>= -iamb, z231T, Id= (~1, 
e2, YI~)~, {Y’) = {y13, y2JT, and al and a2 are shear 
correction factors. In ABAQUS, the shear correction 
factors are calculated by assuming that the transverse 
shear energy through the thickness of the laminate is 
equal to that of the case of unidirectional bending.‘2,‘s 

z 

I- Y 
x 

Fibers 

Fig. 1. Material and element coordinate 
fiber-composite laminate. 

systems for 

The constitutive equations for the lamina in the 
element coordinates (x,y,z) then become: 

{m> = [Q,lk>; [Qll = [~l’[Q;l[~l (7) 

r = [Q2l{rk IQ21 = [GITIQ;l[Gl (8) 
cos *e sin ‘8 sin 8 cos 8 

[Tl = sin 2e cos 2e -sin 8 C0S 8 

-2 sin 8 cos 8 2 sin 8 cos 8 cos *e - sin 28 1 
(9) 

(10) 

where {d={~, qy, GJ’, {~I={L, qJT, {~=-LG 
Ey, YxyK {Y> = {Yx,, YyzK and the fiber orientation, 8, 
is measured counterclockwise from the element local x 
axis to the material 1 axis. 

Let (4 = {e,,, +, r,,J’ be th e in-plane strains at 
the mid-surface of the laminate SeCtiOn, {K} = {K,, K~, 

~~~~~ the curvatures, and h the total thickness of the 
section. If there are n layers in the layup, the stress 
resultants, {N} = {N,, NY, NXY}r, {M} = {M,, MY, MXY}r 
and {V} = {V,, VV}T, can be defined as: 

h,2 [Q~l({~o> + Z(K)) 
= 

d 

z[Q11({4 + Z(K)) 
-he! 

[Q2l{r> I 

dz 

=i 
j=l 

(Zjt - +)[QlI 
1 
i (7-i: - zfb)[QlI PI 4 

; <z; - zfdQ11 [ol {K) 
d ; Czi: - z;dQ11 

PIT PIT (Zjt - Zjb)[Q2 I (7’) 
(11) 

where zjt and zjb are the distance from the mid-surface 
of the section to the top and the bottom of the jth 
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layer respectively. [0] represents a 3 by 2 matrix with 
all the coefficients equal to zero. It can be noted that 
for composite laminae with symmetric layup, the 
extensional and the flexural terms in eqn (11) become 
uncoupled, i.e. 

i;(z;-&)[Q,]= 0” : : 
j=l 

[ 1 (12) 
0 0 0 

4 SEQUENTIAL LINEAR PROGRAMMING 

A general optimization problem may be defined as: 
minimize 

f(x) (134 
subject to: 

g,(z) 5 0, i = 1, . . . , I (13b) 

hj(X_) = 0, j = r + 1, . . . , m (13c) 

pk5xkIqk, k=l,...,n (134 

where x = {x,, x2,. . . , x,}= is a vector of design 
variables, f(z) is an objective function, gi(z) are 
inequality constraints, and h,(X) are equality con- 
straints. pk and qk are lower and upper limits of the 
variable xk. If an optimization problem requires 
maximization, we simply minimize -f(5). 

For the optimization problem of eqns (13) a 
linearized problem may be constructed by ap- 
proximating the non-linear functions at a current 
solution point, 5, = (x0,, xo2, . . . , x,,}~, in a first-order 
Taylor series expansion as follows: minimize 

f(x) =f(x_o) + VW& (14a) 

subject to: 

Si(Z> 2~ gi(X_o> + vgi(Xo)TGX s O (14b) 

hj(X_) ~ hj(SX,) + Vhj(x,)TSx = 0 (14c) 

PkIXkIqk (144 

where i=l,..., r; i=r+l,..., m; k = 1,. . . ,n; 
& = {x, - x,1, x2 - x,2,. . . )X, - x,,}T. 

It is clear that eqns (14) represent a linear 
programming problem and a solution for these 
equations may be easily obtained by the simplex 
method.” After obtaining an initial approximate 
solution for eqns (14), say x1, we can linearize the 
original problem, eqns (13), at x1 and solve the new 
linear programming problem. The process is repeated 
until a precise solution is achieved. This approach is 
referred to as sequential linear programming.‘“,” 

Although the procedure for sequential linear 
programming is simple, the optimum solution for the 
approximated linear problem may violate the 
constraint conditions of the original optimization 
problem. In addition, if the true optimum solution of a 
non-linear problem appears between two constraint 
intersections, a straightforward successive lineariza- 
tion may lead to an oscillation of the solution between 

the widely separated values. Difficulties in dealing 
with such problems may be avoided by imposing a 
‘move limit”‘*” on the linear approximation, which is 
a set of box-like admissible constraints placed on the 
range of &. Generally, the choice of a proper move 
limit depends on experience and on the results of 
previous steps. In addition, the move limit should 
gradually approach zero as the iterative process of the 
sequential linear programming continues.‘0”“20 

The algorithm of the sequential linear programming 
with selected move limits may be summarized as 
follows: 

1. 

2. 

3. 

4. 

A 

linearize the non-linear objective function and 
associated constraints with respect to an initial 
guess 5,; 
impose move limits in the form of -a_ 5 (x_ - 
x0) 5 b, where a and b are properly chosen 
lower and upper bounds; 
solve the approximate linear programming 
problem to obtain an optimum solution x_,; 
repeat the procedures (l)-(3) by redefining x1 
with 5, until either the subsequent solutions do 
not change significantly (i.e. true convergence) 
or the move limit approaches zero (i.e. forced 
convergence); if the solution obtained is due to 
forced convergence, the procedures (l)-(4) 
should be repeated with another initial guess. 

detailed ‘flow diagram’ of sequential linear . . 
programming can be found elswhere.” 

5 RESULTS OF THE OPTIMIZATION 
ANALYSIS 

5.1 Rectangular laminate plates with various aspect 
ratios and end conditions 
In this section composite laminate rectangular plates 
subjected to a uniaxial compressive load N, per unit 
length applied at the edges normal to the x direction 
are analyzed (Fig. 2). The width of the plates, b, is 
10 cm and the length of the plates, a, is varied 
between 5 and 40cm. Three types of end conditions 
are considered, which are two ends simply supported 
(denoted by S) and two ends fixed (denoted by F), 
four ends simply supported, and four ends fixed. 
These end conditions prevent out of plane displace- 
ment, w, but allow in-plane movements, u and u. In 
addition, all the points on the right edge of the plates 
are enforced to displace the same amount u in the x 
direction, and all the points on the upper edge of the 
plates are enforced to displace the same amount u in 
the y direction. The thickness of each ply is 0.125 mm. 
The laminate layups of the plates are [ f 19/90/O],,. In 
order to study the influence of plate thickness on the 
results of optimization, n = 2 (16-ply thin plate) and 
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F 

v=w=ex=ey=ez=o 

same V; w=ex=ey=ez=o 

Cc) 1 F r 

Fig. 2. Uniaxially compressed composite plates with: (a) two 
simply supported ends and two fixed ends; (b) four simply 
supported ends; and (c) four fixed ends. (F, fixed; S, simply 

supported.) 

10 (80-ply thick plate) are selected for analysis. The 
lamina consists of graphite/epoxy (Hercules AS/3501- 
6) and material constitutive properties are taken from 
a previous studty:21 El1 = 128 GPa, Ez2 = 11 GPa, 
y12 = 0.25, G,2 = G,3 = 4.48 GPa, and Gz3 = 1.53 GPa. 
In the finite element analysis, no symmetry simplifica- 
tions are made. A typical buckling mode for 
[ * 40/90/O],, rectangular laminate plate with a/b = 2 
and with two simply supported ends and two fixed 
ends is shown in Fig. 3(a). 

Based on the sequential linear programming 
method, in each iteration the current linearized 
optimization problem becomes: maximize 

subject to: 
o”I8590 (15b) 

- r X q X 0.5" 5 (8 - e,) 5 r X q X 0.5” (15c) 

where N,,, is the critical buckling load, 0, is a solution 
obtained in the previous iteration, and r and q are the 
size and the reduction rate of the move limit. In the 
present study, the values of r and q are selected to be 
20” and 0.9’N-“, where N is a current iteration 
number. In order to control the oscillation of the 
solution, a parameter 0.5” is introduced in the move 
limit, where s is the number of oscillations of the 
derivative JN,,,/a0 that has taken place before the 

current iteration. The value of s increases by 1 if the 
sign of JN,,,/JC3 changes. Whenever oscillation of the 
solution occurs, the range of the move limit is reduced 
to half of its current value, which is similar to a 
bisection method.” This increases the solution 
convergent rate very rapidly. 

The JN,,,/Je term in eqn (15a) may be 
approximated by using a forward finite-difference 
method with the following form: 

aNta,, [N,,,(% + 4 - N~cr(~o)l 
-zz 

ae A8 
(16) 

Hence, to determine the value of ,?NX,,/aO 
numerically, two bifurication buckling analyses to 
compute N,,,( 0,) and N,,,(&, + Ae) are needed in 
each iteration. In this study, the value of A8 is selected 
to be 1” in most iterations. 

This optimization problem involves only one design 
variable 8. Although, there are other simple 
techniques, such as polynomial interpolation and the 
golden section method, available for solving problems 
of one variable, the sequential linear programming 
method is still selected for the optimization. This is 
because the method can be extended to more 
variables (i.e. the angles of other plies) easily.” 

Figure 4 shows the optimal fiber angle 8 and the 
associated optimal buckling load N,,, with respect to 
plate aspect ratio a/b for [ f f3/90/0],, rectangular 
composite plates. From Fig. 4(a), we can see that the 
optimal fiber angle for plates with four simply 
supported ends is less sensitive to a/b than the 
corresponding plates with fixed ends. The optimal 
fiber angle shows the highest sensitivity for the plates 
with all four ends fixed. Nevertheless, the optimal 
fiber angles for plates with different end conditions 
seem to vary around certain values when the plate 
aspect ratios are increased. The results presented in 
Fig. 4(b) show that the effect of end conditions on the 
optimal buckling load are more pronounced for values 
of a/b < 1. As a/b increases, the optimal buckling 
loads approach constant values, and the difference in 
buckling load due to the difference in end conditions 
on the loaded edges of the plates disappears as it does 
for corresponding plates with a fixed value of 8. 
Overall, the highest buckling loads are exhibited by 
the plates with four fixed ends and the lowest by the 
plates with four simply supported ends, which is 
consistent with the trend exhibited by corresponding 
plates with a fixed value of 8. 

Figure 5 shows the optimal fiber angle 8 and the 
associated optimal buckling load versus plate aspect 
ratio for [f e/90/o]10, rectangular composite plates. 
Figure 5(a) shows that the optimal fiber orientation 
for plates with four fixed ends is not sensitive to a/b. 
The optimal fiber angle varies between 0” and 22” for 
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(a) Rectangular plate (a/b = 2), N,,, = 2.41 kN/cm 

(b) Square plate (d/b = OS), Nxcr = 3.36 kN/cm 

(c) Rectangular plate (a/b = 2, d/b = 0.8), Nx,, = 3.30 kN/cm 

Fig. 3. Typical buckling modes of composite plates with [ f 40/90/O],, laminate layup and with two simply supported ends and 
two fixed ends. 

plates with two simply supported ends and two fixed 
ends. For plates with four simply supported ends, the 
optimal fiber angle oscillates between 18” and 42”. It 
seems that the optimal fiber angles are sensitive to the 
end conditions even for large plate aspect ratios. From 
Fig. 5(b), it can be seen that the optimal buckling 
loads change significantly for plates with small aspect 
ratios and gradually approach constant values when 
the aspect ratios become large. 

Comparing Fig. 5 with Fig. 4, we can observe that 
when the plate thicknesses are increased, not only do 
the optimal buckling loads of plates increase but also 
the transverse shear deformation greatly affects the 
behavioral trends of the optimal fiber angle. 

5.2 Square laminate plates with various central 
circular cutouts and end conditions 
In this section, composite laminate square plates with 
a central circular cutout subjected to uniaxial 
compressive load as shown in Fig. 6(a) are analyzed. 
The length of the plates, a, is 10 cm and the diameter 
of the cutout, d, varies between 1 and 8cm. Three 
types of end conditions, i.e. SFSF, SSSS, and FFFF, 
similar to those in the previous section are considered. 
Again, the laminate layups, [ f 0/90/O],, and [f 
8/9O/O]i&, are selected for analysis. A typical buckling 
mode for [ f 40/90/O],, square laminate plate with 
d/a = 0.5 and with two simply supported ends and two 
fixed ends is shown in Fig. 3(b). 
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Fig. 4. Effect of end conditions and plate aspect ratios on 
buckling optimization of uniaxially compressed [ f 0/90/O],, 

rectangular composite plates. 

Figure 7 shows the optimal fiber angle and the 
associated optimal buckling load versus the ratio d/a 
for [ f 0/90/O],, square composite plates with a central 
circular cutout. From Fig. 7(a), we can see that the 
optimal fiber orientations of these plates with various 
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Fig. 5. Effect of end conditions and plate aspect ratios on 
buckling optimization of uniaxially compressed [ f e/90/0],, 

rectangular composite plates. 

k 
a 

a 

AU 
(a) Square plates 

44 
(b) Rectangular plates 

Fig. 6. Composite plates with a circular cutout at center. 

end conditions are quite different. The optimal fiber 
orientation shows the highest sensitivity for the plates 
with two simply supported ends and two fixed ends. 
The optimal fiber angle is around 40” for plates with 
four simply supported ends. For plates with four fixed 

- S-F-S-F 
- l - S-S-S-S 
--w--F_F_F_F 

I 

Ot..“““..“‘..t:.~...*‘.“,‘,.~ 
0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 

d/a 
(a) d/a vs. optimal fiber angle 0 

0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 

d/a 
(b) d/a vs. critical compressive load 

Fig. 7. Effect of end conditions and sizes of cutouts on 
buckling optimization of uniaxially compressed [ & e/90/0],, 

square composite plates with a central circular cutout. 
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ends, the optimal fiber angle is not sensitive to the 
sizes of the cutouts until d/a > 0.6. Figure 7(b) shows 
that the optimal buckling loads increase with the 
increase of the sizes of cutouts for plates with four 
fixed ends, and plates with two simply supported ends 
and two fixed ends. This phenomenon is quite 
different from our intuition that introducing a large 
hole into a plate can cause a reduction in the buckling 
load of the plate. However, a previous study of 
isotropic plates 23 did show that introducing a hole into 
a plate does not always reduce the buckling load and, 
in some instances, may increase its buckling load. In 
addition, this notion has been verified both numeri- 
cally and experimentally7 for orthotropic laminated 
plates. For plates with four simply supported ends, the 
optimal buckling load first decreases then increases 
with increasing d/a ratio. 

Figure 8 shows the optimal fiber angle and the 
optimal buckling load with respect to the d/a ratio for 
[ f 8/90/O]r0, square composite plates with a central 
circular cutout. We can observe that the optimal fiber 
angles and optimal buckling loads of plates with two 
simply supported ends and two fixed ends are the 
same as those of plates with four fixed ends. We can 
also observe that for the same d/a ratio, the plates 
with four simply supported ends have the greatest 
optimal fiber angles and have the lowest buckling 
loads. However, the difference in optimal fiber angle 
and buckling load due to the difference in end 
conditions disappears when the size of the cutout is 
large (say d/a > 0.6). In spite of the end conditions, 

-B--S-F-S-F 

-A- s-s-s-s 
0 

& 20 
--“--F_,XF_F 

5 15 
--C --a _- \ 

CD 10 \ ?--I / 

o~,.-..,.:...~...,.,..~ 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

d/a 
(a) d/a vs. optimal fiber angle 9 

20t..",'...,....'....""',".',"..~ 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

d/a 
(b) d/a vs. critical compressive load 

Fig. 8. Effect of end conditions and sizes of cutouts on 
buckling optimization of uniaxially compressed [ f ~3/90/0],, 

square composite plates with a central circular cutout. 

the optimal buckling loads of these plates decrease 
with increasing size of cutouts. 

Comparing Fig. 8 with Fig. 7, we can observe that 
the plate thickness has very little influence on the 
optimal fiber orientations of plates with four fixed 
ends. However, it affects significantly the optimal fiber 
orientations of plates with four simply supported ends 
and plates with two simply supported ends and two 
fixed ends. 

5.3 Rectangular laminate plates containing a central 
circular cutout with various aspect ratios and end 
conditions 
In this section composite laminate rectangular plates 
with a central circular cutout subjected to uniaxial 
compressive load as shown in Fig. 6(b) are analyzed. 
The width of the plates, b, is 10 cm, the length of the 
plates, a, varies between 5 and 40cm, and the 
diameter of the cutout, d, is selected to be 8 cm. 
Again, three types of end conditions, SFSF, SSSS, and 
FFFF, and two types of laminate layups, [ f 6/90/O],, 
and [ f 8/90/O]10s, are selected for analysis. A typical 
buckling mode for [ f 40/90/O],, rectangular laminate 
plate with a/b = 2, d/b = 0.8 and with two simply 
supported ends and two fixed ends is shown in Fig. 

3(c)* 
Figure 9 shows the optimal fiber angle and the 

associated optimal buckling load versus plate aspect 
ratio for [ f 0/90/O] 2s rectangular composite plates 
with a central circular cutout. From Fig. 9(a), we can 

‘. 

-%- 
-*- 
__*. 

I 1.5 2 2.5 3 3.5 4 

a/b 
(a) Aspect ratio a/b vs. optimal fiber angle 0 

t L.3 - - ++ - - F_F_F_F 

z 2.0 

1 1.5 2 2.5 3 3.5 4 

a/b 
(b) Aspect ratio a/b vs. critical compressive load 

Fig. 9. Effect of end conditions and plate aspect ratios on 
buckling optimization of uniaxially compressed [ f 0/90/0]2, 
rectangular composite plates with a central circular cutout 

(d/b = 03). 



284 H.-T. Hu, B.-H. Lin 

see that the optimal fiber angle for plates with four 
simply supported ends is greater than those of plates 
with other end conditions. The optimal fiber angles of 
plates with four fixed ends and plates with two simply 
supported ends and two fixed ends gradually approach 
0” when the plate aspect ratios are large. Figure 9(b) 
shows that the optimal buckling loads for plates with 
four fixed ends, and with two simply supported ends 
and two fixed ends gradually decrease when the a/b 
ratio increases. It seems that the optimal buckling 
loads of plates with four simply supported ends are 
insensitive to the a/b ratio. 

Figure 10 shows the optimal fiber angle 8 and the 
associated optimal buckling load versus plate aspect 
ratio for [ f 0/90/O]10S rectangular composite plates 
with a central circular cutout. We can see that the 
results of optimization (both optimal fiber angle and 
optimal buckling load) for these plates with various 
end conditions are very close. Comparing Fig. 10 with 
Fig. 9, we can observe that the results of optimization 
for thin plates with various end conditions are quite 
different. However, for thick plates, the end 
conditions have almost no influence on the results of 
optimization. 

Comparing plates with cutouts (Fig. 9) with plates 
without cutouts (Fig. 4), we can see that the cutouts 
cause the results of optimization of thin plates with 
two simply supported ends and two fixed ends to be 
close to those of plates with four fixed ends. 
Comparing Fig. 10 with Fig. 5, we can see that the 

26 

24 

1 1.5 2 2.5 3 3.5 4 

a/b 
(a) Aspect ratio a/b vs. optimal fiber angle 0 
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-A- ~-S-~.~ 
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37~.““.““““‘..“‘.“““‘.~ 
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a/b 
(b) Aspect ratio a/b vs. critical compressive load 

Fig. 10. Effect of end conditions and plate aspect ratios on 
buckling optimization of uniaxially compressed [ f 0/90/O],, 
rectangular composite plates with a central circular cutout 

(d/b = O-8). 

cutouts cause the results of optimization of thick 
plates with different end conditions to become close 
together. 

6 CONCLUSIONS 

In the process of sequential linear programming, most 
optimal results are obtained within 11 iterations, and 
the results are all verified by choosing different initial 
guesses. Hence, as a general conclusion, the sequential 
linear programming is efficient and stable to solve 
non-linear optimization problems. 

For the optimal buckling analysis of uniaxially 
compressed symmetrically laminated plates with 
various plate thicknesses, aspect ratios, circular 
cutouts and end conditions, the following conclusions 
may be drawn. 

1. 

2. 

3. 

4. 

5. 

For thin rectangular composite plates without 
cutouts, and with various end conditions, the 
optimal fiber angles seem to vary around certain 
values when the plate aspect ratios are 
increased. For thick plates, the optimal fiber 
angles are sensitive to the end conditions even 
when the plate aspect ratios are large. When the 
plate aspect ratios are increased, the optimal 
buckling loads of all thin and thick plates with 
different end conditions gradually approach to 
constant values. 
The optimal fiber angles and the optimal 
buckling loads of thin square composite plates 
with a central circular cutout are influenced 
significantly by the end conditions. The optimal 
buckling loads of these plates, except the plates 
with four simply supported ends, increase with 
the increase of the sizes of cutouts. Hence, it is 
possible to tailor the cutout size and fiber angle 
to increase the buckling loads of traction loaded 
plates beyond those of corresponding plates 
without cutouts. 
For thick square composite plates with a central 
circular cutout, the results of optimization of 
plates with two simply supported ends and two 
fixed ends are the same as those of plates with 
four fixed ends. Nevertheless, when the sizes of 
the cutouts are large, the results of optimization 
for plates with different end conditions seem to 
be very close. In addition, the optimal buckling 
loads of these thick plates all decrease with the 
increase of the sizes of cutouts. 
The presence of a central circular cutout for thin 
rectangular composite plates causes the results 
of optimization for plates with two simply 
supported ends and two fixed ends to be close to 
those of plates with four fixed ends. 
The presence of a central circular cutout for 
thick rectangular composite plates causes the 
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end conditions to have almost no influence on 
the results of optimization. 

In this paper, bifurcation buckling analysis is carried 
out based on the assumption that the composite 
laminate material behaves linearly. For low aspect 
ratio plates and for plates with large cutouts, the 
stresses in the laminates may exceed the elastic range 
and these laminates are probably driven by compres- 
sion strength failure instead of buckling. In these 
cases, buckling analyses of composite plates based on 
non-linear material properties are recommended.24 
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