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Abstract 

A nonlinear material constitutive model, including a nonlinear in-plane shear formulation and a failure criterion, for 
fiber-composite laminate materials is employed to carry out finite element buckling analyses for composite plates under 
uniaxial compressive loads. It has been shown that the nonlinear in-plane shear together with the failure criterion have 
significant influence on the buckling behavior of composite laminate plates. 

I. Introduction 

The use of fiber reinforced composite laminate plates in aerospace structures has increased 
rapidly in recent years. The composite plate structures are commonly subjected to various kinds of 
compression which may cause buckling. Therefore, knowledge of the buckling and postbuckling 
behavior of composite plates has become essential in design. In the literature, most stability studies 
of composite laminate plates have been limited to the geometrically nonlinear analysis [ 1-4]. Little 
attention has been paid to the material nonlinearity. 

It is well known that unidirectional fibrous composites exhibit severe nonlinearity in in-plane 
shear stress-strain relation. In addition, deviation from linearity is also observed in transverse 
loading but the degree of nonlinearity is not comparable to that in the in-plane shear [5]. For 
graphite/epoxy and boron/epoxy, this nonlinearity associated with the transverse loading can 
usually be ignored [6]. 

A significant number of macromechanical models have been proposed to represent the consti- 
tutive relation of fiber-composite materials such as nonlinear elasticity models [5, 7, 8], or plas- 
ticity models [9-12]. In addition, various failure criteria have also been proposed to predict 
the onset of failure in single layer of fiber-reinforced composites, such as maximum strain theory, 
maximum stress theory, Tsai-Wu theory, Hoffman theory, etc. [13]. The mechanical response 
of fiber-composite materials is very complicated. Since the nonlinearity of in-plane shear 
is significant for composite materials, this work is therefore focusing on the influence of the 
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in-plane shear nonlinearity together with a failure criterion on the buckling response of composite 
plates. 

In this paper, a material model including the nonlinear in-plane shear and the Tsai-Wu failure 
criterion is reviewed first. Then, nonlinear buckling analyses for simply supported composite plates 
under uniaxial compression are carried out using the ABAQUS finite element program [14]. 
Numerical results for the material nonlinear buckling behavior of these composite plates are 
compared with those using linear material properties. Finally, important conclusions obtained 
from this study are given. 

2. Constitutive modeling of lamina 

For fiber-composite laminate materials, each lamina can be considered as an orthotropic layer in 
a plane stress condition. The incremental stress-strain relations for a linear orthotropic lamina in 
the material coordinates (1, 2, 3) can be written as 

A{~'} = [Qi]A{e'},  (1) 

A{z;} = [Qi]A{7;},  (2) 

where A{ff'} = A{O l ,  02,'c12} T, A{%'i} = A{'c13,T23} T, A {s ' }  = A{~1,82,~12} T, A{~; }  = A{'~13,~23} T, 
and 

[Qi] = 

Elx v12E22 
1-VlEV21 1-VlEV21 

v21Ell E22 
1--V12V21 1--V12V21 

0 0 

0 

0 

G12 

(3) 

[Q~]=[~1G13 ~2023], (4) 

where ~1 and 52 are the shear correction factors 1-15] and are taken to be 0.83 in this study. 
To model the nonlinear in-plane shear behavior, the nonlinear strain-stress relation for a com- 

posite lamina suggested by Hahn and Tsai I-5] is adopted in this study, which is given as follows: 
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In this model only one constant $6666 is required to account for the in-plane shear nonlinearity. 
The value of $6666 can be determined by a curve fit to various off-axis tension test data [5-1. 
Inverting and differentiating Eq. (5), we can obtain the nonlinear incremental constitutive matrix 
for the lamina as Ibllows: 

= 

E, 1 v12E22 
0 

1--V12V21 1--V12V21 
rEtEl l  E22 

0 
1--V12V21 1--V12V21 

1 
0 0 

1/G12 + 3S6666"~f2 

(6) 

The validity of using Eq. (6) to model the nonlinear in-plane shear has been demonstrated by the 
paper of Hahn and Tsai [5] and is not repeated here. Furthermore, it is assumed that the transverse 
shear stresses always behave linearly and do not affect the nonlinear behavior of in-plane shear. 
Hence, the same shear correction factors and shear moduli for transverse shear as those given in 
Eq. (4) also apply to the cases of nonlinear in-plane shear. 

3. Failure criterion and degradation of stiffness 

Among existing failure criteria, the Tsai-Wu criterion [16] has been extensively used in 
literature and it is adopted in this analysis. Under plane stress conditions, this failure criterion has 
the following form: 

Fltra + F20" 2 + Flltr 2 + 2F120"lt72 + F2202 + F660"f2 = 1, (7) 

where 

1 1 1 1 
F 1 = ~ + ~ 7 ,  F 2 = y + ~ - 7 ,  

- 1  - 1  1 
Fl l  = X X "  F22 - y y , ,  F66 = ~--~. 

The X, Y and X', Y' are the lamina longitudinal and transverse strengths in tension and compres- 
sion, respectively, and S is the shear strength of the lamina. Though the stress interaction term 
F12 in Eq. (7) is difficult to be determined, it has been suggested by Narayanaswami and Adelman 
1-17] that F12 can be set equal to zero for practical engineering applications. Therefore, F12 = 0 is 
used in this investigation. 

During the numerical calculation, incremental loading is applied to composite plates until failure 
in one or more of individual plies is indicated according to Eq. (7). Since the Tsai-Wu criterion 
does not distinguish failure modes, the following two rules are used to determine whether the ply 
failure is caused by resin fracture or fiber breakage [13]: 

(1) If a ply fails but the stress in the fiber direction remains less than the uniaxial strength of the 
lamina in the fiber direction, i.e. X' < at < X, the ply failure is assumed to be resin induced. 
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Consequently, the laminate loses its capability to support transverse and shear stresses, but 
remains to carry longitudinal stress. In this case, the constitute matrix of the lamina becomes 

Ell 0 0 

[ Q i ] =  o o o (8) 

o o o 

(2) If a ply fails with o1 exceeding the uniaxial strength of the lamina, the ply failure is caused by 
the fiber breakage and a total ply rupture is assumed. In this case, the constitutive matrix of the 
lamina becomes 

= o . 

0 

(9) 

4. Constitutive modeling of  composite shell section 

The elements used in the finite element analyses are eight-node isoparametric shell elements with 
six degrees of freedom per node (three displacements and three rotations). The formulation of the 
shell allows transverse shear deformation 1-14, 18] and these shear flexible shells can be used for 
both thick and thin shell analysis [14]. 

During a finite element analysis, the constitutive matrix of composite materials at the integration 
points of shell elements must be calculated before the stiffness matrices are assembled from the 
element level to the structural level. For composite materials, the incremental constitutive equa- 
tions of a lamina in the element coordinates (x, y, z) can be written as 

A { o }  = 

A{T1} = [Q2]A{~t} ,  

(lO) 

(11) 

cos 0 sin 0 ] 
I T 2 ] =  - s i n 0  cos0J  

L COS 2 0 sin 2 0 
[Tx] = sin 2 0 cos 2 0 

- 2sin 0 cos 0 2sin 0 cos 0 

[Q2] = [ T2]T[Q~] [T2], 

[Q, ]  = [T , ]a ' [Q i ]  [ T I ] ,  (12) 

(13) 

sin0cos0 -] 
- sin 0 cos 0 ], 

cos z 0 - sin 2 0 
(14) 

(15) 

and 0 is measured counterclockwise from the element local x-axis to the material 1-axis (Fig. 1). 

where A{a} = A{ax, ay,zxy} T, A{zt} = A{zxz, Zrz} T, A{e} = A{e~,er, ~,.y} T, A{yt} = A{~,~,~rz} T, 
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Laminate layups: 
[90•0]2 S 

[ 4 5 1 - 4 5 1 2 s  

w 
x 

i ~ ' ' -  . . . . . .  : ~..._ 

Plate geometry: 
L = 10.16 cm (4 in.) 

t = 0 . 8 1 c m  (0.32 in.) 

P ly  constitutive properties: Ply strengths: 
E l l  = 138 G P a  X = 1450 M P a  

E22 = 14.5 G P a  X' = -1450  M P a  

G12 = GI3 = 5 .86 G P a  Y = 52 M P a  

G23 = 3.52 G P a  Y' = -206  M P a  

v12  -- 0.21 S = 93 M P a  

$6666 = 7.31 (GPa)  3 

Fig. 1. Geometric and material properties for graphite/epoxy composite laminate plate. 

Assume A {to } := A {exo, ero, ~,,yo }v are the incremental in-plane strains at the mid-surface of the 
section and A { x ) =  A{/cx, K r, xxr} T are the incremental curvatures. The incremental in-plane 
strains at a distance z from the mid-surface of the shell section become 

A{~} = A{~o} + zA{,,} (16) 

Let h be the total thickness of the shell section, the incremental stress resultants, 
A{N}  = A { N x , N r , N x r }  T, A{M} = A { M x , M y , M , r }  T and A{ V} = A{ V,,, Vr}, can be defined as 

A{N} 
A{M} 
A{V) 

= f ,  hl2 

J -  hi 2 A{zt} 
dz = ~h/2 

J -  hi2 

[Q1](A(8o} + zA(K}) 
zl-e,](A{¢o} + zA{~}) 

[Q~]A{v,} 
dz 

r'h/2 [EO'] z[Ol] EO] 
=/ |zEQ1] z2EO,] EO] 

J-h/2 kEonT EO]~ [e~] A{~t} ) 
(17) 

where [0] is a 3-by-2 matrix with all the coefficients equal to zero. 
For the nonlinear material case, the [Qi-I matrix in Eq. (12) can be taken from Eqs. (6), (8) or (9) 

and the incremental stress resultants of Eq. (17) can be obtained by a numerical integration 
through the thickness of the composite shell section. For the linear material case, the [Qi-1 matrix 
used in Eq. (12) is taken from Eq. (3) and the incremental stress resultants of the shell section can be 
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written as a summation of integrals over the n laminae in the following form: 

A{N} [ 
A{M} ~ , 2 2 3_Zab)[Q,]  A{K}} (18) = ~ (z~, - z ~ b ) [ Q , ]  -'3 (zj, [0]  
A { V }  j : l  A{Tt}  ) 

L [ 0 IT  [ 0 ]  T (zit --  Zib)[Q2] 

where zjt and Zjb are distances from the mid-surface of the section to the top and the bottom of the 
jth layer, respectively. 

5. Nonlinear finite element analysis 

In the ABAQUS finite element program, the nonlinear response of a structure is modeled by an 
updated Lagrangian formulation and a modified Riks nonlinear incremental algorithm [19] can be 
used to construct the equilibrium solution path. To model bifurcation from the prebuckling path to 
the postbuckling path, geometric imperfections of composite plates are introduced by superimpos- 
ing a small fraction (say 0.001 of the plate thickness) of the lowest eigenmode determined by 
a linearized buckling analysis to the original nodal coordinates of plates. 

6. Numerical analyses 

6.1. Composite plates with [90/012 s and [45/-4512 s layups 

In this section, composite laminate square plates with two laminate layups, [90/0]2 s and 
[45/-4512s, are analyzed. The thickness of each ply is 1.02 mm (0.04 in). Ply constitutive proper- 
ties and plate geometry are given in Fig. 1. The linear and nonlinear in-plane shear stress-strain 
curves are shown in Fig. 2. Both plates are subjected to uniform uniaxial compressive loads in the 
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Fig. 2. In-plane shear stress-strain curves for composite lamina. 
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x direction. The edges of the plates are simply supported, which prevents out of plane motions but 
allows in-plane movements in x and y directions. In the numerical analysis, the entire plate is 
modeled by a 6 x 6 finite element mesh (36 shell elements). 

To estimate the buckling loads and to generate geometric imperfections for composite plates, 
linearized buckling analyses are carried out first. The linearized buckling loads and buckling modes 
are shown in Fig. 3. The buckling modes of these two plates are very similar. Both plates buckle 
into a half-wave in the x direction and a half-wave in the y direction. 

The load-displacement curves for the plate with a [90/012s layup are plotted in Fig. 4. The Nx is 
the total force (po:~itive value means compression) applied to the edges and ux is the associated end 
displacement (positive value means end extension and negative value means end shortening). It can 
be seen that the curves computed by using linear and nonlinear in-plane shear formulations are 
very close. Hence, nonlinear in-plane shear alone does not have much influence on the buckling 
and postbuckling responses of this plate. For the analysis carried out using the nonlinear in-plane 
shear formulation together with the Tsai-Wu criterion, the composite plate behaves almost 
linearly until a sudden collapse of the plate occurs. The predicted failure load is about 99% of the 
linearized buckling load. 

Nxc  r = 67.4 kN/cm Nxc  r = 85.4 kN/em 

[90/012S l a y u p  [45/-4512S l a y u p  

Fig. 3. Critical buckling loads and buckling modes for composite plates under uniaxial compression. 

100 - , • , - , * , - , - 

,-. 80 ~ 

~ 40 Z - - - N o n l i n e a r  shear " ~  
20 - - • - Nonlinear.  she.ar with - ' ~  

0 failure criterion -~D,~  

-0.24 -0.20 -0.16 -0.12 -0.08 -0.04 0.00 

Ux(Cm) 

Fig. 4. Load-displacement curves for composite plate with ['90/012s layup under uniaxial compression. 
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Fig. 5. Load-displacement curves for composite plate with [45/-4512s layup under uniaxial compression. 

Fig. 5 plots the load-displacement curves for the plate with a [45/-4512s layup. With this kind 
of laminate layup, each lamina in the composite plate is subjected to severe shear loading. 
Therefore, it is a good sample to test the influence of nonlinear in-plane shear and failure theory on 
the buckling behavior of the plate. On contrary to the previous case, with the nonlinear in-plane 
shear formulation alone, the plate exhibits very nonlinear behavior throughout the entire loading 
stage. The load carrying capacity for the plate with the nonlinear in-plane shear formulation is 
much less than that with the linear shear formulation. For the analysis carried out using the 
nonlinear in-plane shear formulation together with the Tsai-Wu criterion, this plate exhibits 
a sudden failure mode while the loading is very low. The predicted failure strength of the composite 
plate is only about 19% of the linearized buckling load. 

6.2. Composite plates with [ +O/90/O]s layups 

In this section, the [ _0/90/0Is composite laminate plates are analyzed. The geometric and 
material properties, loading and finite element mesh of the plates are the same as those in the 
previous section. 

Figs. 6-12 show the load-displacements curves, computed using the nonlinear in-plane shear 
formulation together with the Tsai-Wu criterion, for composite plates with various 0 angles. For 
plates with 0 equal to 0 °, 30 °, 60 ° and 90 ° (i.e., Figs. 6, 8, 10 and 12) additional load-displacement 
curves computed using the linear and nonlinear in-plane shear formulation are also plotted. 

From Figs. 6, 8, 10 and 12, one can see that nonlinear in-plane shear alone does not have much 
influence on the buckling and postbuckling responses of these plates. For the analysis carried out 
using the nonlinear in-plane shear formulation together with the Tsai-Wu criterion, the composite 
plates with 0 between 0 ° and 20 ° (Figs. 6 and 7) and with 0 close to 90 ° (Fig. 12) behave almost 
linearly until a sudden collapse of the plates occur. For the other plates with 0 between 30 ° and 80 ° 
(Figs. 8-11), they exhibit progressive failure mechanisms after the ultimate strengths of the plates 
have been reached. 

In Fig. 13 the predicted ultimate strengths of the composite plates using the nonlinear shear 
formulation together with the Tsai-Wu criterion are compared with those obtained by the 
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Fig. 6. Load-displacement curves for composite plate 
with [--t-0/90/0]s layup under uniaxial compression. 

Fig. 7. Load-displacement curves for composite plates 
with [+10/90/0]sand [+20/90/0]s  layups under 
uniaxial compression (nonlinear shear with failure cri- 
terion only). 

120 

100 

8 0 Linear s h e a r ~ ~  
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Z x 40 ~°~Ooo; 
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failure criterion - %  
0 n I I n I I - 

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 
Ux(Cm) 

Fig. 8. Load-displacement  curves for composite plate 
with [ + 30/90/0]s layup under uniaxial compression. 

60 

50 0=40 
- - -0=50 

E 40 

30  

j x Z x 2 0  ~ - , , 

10 

0 i i i 

-0.4 -0.3 -0.2 -0.1 0.0 
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Fig. 9. Load-displacement curves for composite plates 
with [_+40/90/0]s and [+50/90/0]s  layups under 
uniaxial compression (nonlinear shear with failure cri- 
terion only). 
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-0.36 -0.30 ..0.24 -0.18 -0.12 -0.06 0.00 
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Fig. 10. Load-displacement  curves for composite plate 
with [ + 60/90/0]s layup under uniaxial compression. 
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-0.40 -0.30 -0.20 -0.10 0.00 

Ux(Cm) 

Fig. 11. Load-displacement curves for composite plates 
with [+70/90/0]s  and [_80/90 /0]s  layups under 
uniaxial compression (nonlinear shear with failure cri- 
terion only). 
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Fig. 12. Load-displacement  curves for composite plate 
with [ + 90/90/0]s layup under uniaxial compression. 
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Fig. 13. Critical load N~¢r as a function of 0 for com- 
posite plate with [ + 0/90/0]s layup under uniaxial com- 
pression. 

linearized buckling analyses. From this figure, one can see that the predicted ultimate strengths of 
the plates with 0 between 0 ° and 20 ° and with 0 close to 90 ° are very close to the linearized buckling 
loads. On the other hand the predicted ultimate strengths of the plates with 0 between 30 ° and 80 ° 
are much lower than the linearized buckling loads. It can also be observed that the optimal fiber 
angle 0 for the plates with the material nonlinear analysis seems around 20 °. This is quite different 
from the optimal fiber angle for the plates with linearized buckling analysis, which seems between 
40 ° and 50 ° . 

7. Conclusions 

For the material nonlinear analysis of composite plates with various laminate layups, the 
following conclusions can be drawn. 

1. The nonlinear in-plane shear alone does not have much influence on the buckling responses 
and buckling strengths of the plates with [90/012s and I-+0/90/01s layups. 

2. The nonlinear in-plane shear together with material failure according to the Tsai-Wu theory 
has great influence on the buckling and postbuckling responses of the plates with [90/012s and 
[ + 0/90/0Is layups. Its effect on the reduction of ultimate strengths and postbuckling stiffness of 
these plates depends on the laminate layups. 

3. The nonlinear in-plane shear alone has significant influence on the buckling response of the 
plate with a [45/-4512s layup. In addition, if the Tsai-Wu criterion is considered, the plate 
exhibits a sudden failure mode and the predicted ultimate strength of the composite plate is much 
lower than the linearized buckling load. 

4. The optimal fiber angle 0 for the [ + 0/90/01s composite plates with the analysis using the 
nonlinear in-plane shear formulation and the Tsai-Wu failure theory is quite different from that 
obtained using the linearized buckling analysis. 
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