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Buckl ing  opt imizat ion  of f iber-composi te  laminate  shells 
considering in-plane shear nonlinearity 

H.-T.  H u  

Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China 

A b s t r a c t  The buckling strengths of fiber-composite laminate 
shells with a given material system are maximized with respect to 
fiber orientations using a sequential linear programming method 
together with a simple move-limit strategy. While a modified 
Riks nonlinear solution algorithm is utilized to analyse the buck- 
ling and postbuckling behavionr of composite shells, both linear 
and nonlinear in-plane shear formulations are employed to form 
the finite-element constitutive matrix for fiber-composite laminae. 
Results of the optimization study for simply supported composite 
cylindrical shells using both linear and nonlinear in-plane shear 
formulations are presented. 

1 I n t r o d u c t i o n  

The use of high modulus and high strength fiber compos- 
ite materials (Fig. 1) in advanced shell structures such as 
submarine pressure hulls, surface ships and aircraft fuselages 
has increased rapidly. In many situations buckling is an un- 
desirable phenomenon in the safe and reliable design of these 
advanced composite shells. Since the buckling strength of 
fiber composite shells heavily depends on ply orientations, the 
proper selection of appropriate fiber orientations for a given 
composite material system to achieve the maximum buckling 
strength of composite shells becomes a crucial problem. 
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bearing capacity of composite laminae (Hahn and Tsai 1973; 
Hashin el al. 1974). Hence in this study, optimization for 
the buckling resistance of fiber-composite laminate cylindri- 
cal shells with respect to fiber orientations including the non- 
linear in-plane shear is presented. For comparison purposes, 
optimization using the linear in-plane shear stress-strain rela- 
tion is also carried out. The buckling strengths of composite 
shells are computed by the finite element program ABAQUS 
(ttibbitt et al. 1993) and the optimization is done by a se- 
quential linear programming technique together with a simple 
move-limit strategy (Zienkiewicz and Champbell 1973; Van- 
derplaats 1984) 

In this paper, the nonlinear constitutive matrix for a sin- 
gle lamina, the constitutive matrix for a shell section, the 
nonlinear finite element buckling analysis, and the sequen- 
tial linear programming method are briefly discussed. Then 
numerical results for the buckling optimization of simply 
supported composite cylindrical shells subjected to exter- 
nal hydrostatic compression with different laminate layups, 
[4-9/902/0]S and [4-¢/902/02/902/7=/9],are presented, where 
/9 and ¢ are design variables. Finally, conclusions obtained 
from this study are given. 

2 Cons t i t u t i ve  m a t r i x  for  single l amina  

For fiber-composite laminate materials, each lamina can be 
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considered as an orthotropic layer in a plane stress condi- 
tion. If we define ~r t = {~rl, c~2,Vl2} T, r~ = {r13,v23} T, 

el = {s1,~2,712} T, ~ = {713,723} T, the incremental 
stress-strain relations for a linear orthotropic lamina in the 

Fig. 1. Material and element coordinate systems for a fiber com- 
posite laminate 
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Most buckling optimization studies of composite shells 
have dealt with linear material properties (Sun and Hansen 
1988; Hu and Wang 1992). However, the nonlinear in-plane 
shear is expected to have significant influence on the load 
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Q~ = [ a1G13 0 ] (4) 
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The a l  and a2 are shear correction factors and are taken to 
be 0.83. 

To model the nonlinear in-plane shear behaviour, the non- 
linear strain-stress relation for a composite lamina suggested 



by Hahn and Tsai (1973) is adopted in this study, which is 
given as follows: 
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In the above equation only one material constant $6666 is 
required to account for the in-plane shear nonlinearity. The 
value of $6666 can be determined by a curve fit to various off- 
axis tension test data (Hahn and Tsai 1973). Differentiating 
(5), we have 
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equation, we obtain the nonlinear incre- 
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3 Cons t i t u t i ve  m a t r i x  for  compos i t e  shell sec t ion 

The elements used in finite-element analyses are eight-node 
isoparametric shell elements with six degrees of freedom per 
node (three displacements and three rotations). The formu- 
lation of the shell allows transverse shear deformation (Irons 
1975; Hibbitt et al. 1993) and these shear flexible shells can 
be used for both thick and thin shell analysis (Hibbitt ef al. 
1993). 

During a finite element analysis, the constitutive matrix 
of composite materials at the integration points of shell el- 
ements must be calculated before the stiffness matrices are 
assembled from the element level to the structural level. For 
fiber-composite laminate materials, the incremental constitu- 
tive equations of a lamina in the element coordinates (z, y, 
z) can be written as 

z~r  = q l z ~ ,  (8) 

z x ~  = q 2 a ' ~ t ,  (9) 

T t Q1 = T1 QIT1 ,  (10) 

T , (11) Q2 = T2 Q2T2, 

169 

cos 2 ¢ sin 2 ¢ sin ¢ cos ¢ ] 
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where A~r = A{ax, ~y, 7xy} T, A-r t = A{vxz, Vyz} T, Ae = 
A{ex,ey, 7xy}T, Am = A{7zz, 7yz}T, and ¢ is measured 
counterclockwise from the element local x-axis to the material 
1-axis. 

Assume that Ae 0 ---- A{ex0 , eyO, 7xyO } Tare the incremen- 
tal in-plane strains at the mid-surface of the section and 
A~ = A{~x,~y,~xy} T the incremental curvatures. The 
incremental in-plane strains at a distance z from the mid- 
surface of the shell section become 

A~ = A~ 0 + zA~, (14) 

Let h be the total thickness of the shell section, the incre- 
mental stress resultants, An = A{nx,ny,nxv}  T, A m  = 
A{mx, my, mxy} T and Av = A{vx, vy}, can be defined as 

A m  = zA~r dz = 
Av -hi2 A~'t 

zQ1 z2Q1 D A~ dz, (15) 
-h/2 DT DT Q2 A~It 

where D is a 3 x 2 matrix with all the coefficients equal to 
zero. 

For the nonlinear material case, the Q~ matrix in (10) is 
taken from (7) and the incremental stress resultants of (15) 
can be obtained by a numerical integration through the thick- 
ness of the composite shell section. For the linear material 
case, the Q~ matrix used in (10) is taken from (3) and the 
incremental stress resultants of the shell section can be writ- 
ten as a summation of integrals over the k laminae in the 
following form: 

Am 
Av 

( z J t -  Zjb)Q1 ~ j r -  jb)~41 D 
1%2 z 2 ~" D 

j = l  -~(z fl n ~ b ) Q 1  (zJt _ ZJb)Q2 

A~; , (!6) 
A,-/t 

where zjt and Zjb are distances from the mid-surface of the 
section to the top and the bottom of the j- th layer, respec- 
tively. 

4 Nonl inea r  buckl ing  analysis  

In the ABAQUS finite element program, the nonlinear re- 
sponse of a structure is modelled by an updated Lagrangian 
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formulation and a modified l~iks nonlinear incremental al- 
gorithm (Riks 1979) can be used to construct the equilib- 
rium solution path. To model bifurcation from the prebuck- 
ling path to the postbuckling path, geometric imperfections 
of composite shells are introduced by superimposing a small 
fraction of the lowest eigenmode, determined by a linearized 
buckling analysis, to the original nodal coordinates of the 
shell as 

i = O + f lh¢ ,  (17) 

where I is the resulting imperfect nodal coordinate of the 
shell, O is the original nodal coordinate of the shell, ¢ is the 
normalized lowest eigenmode, and fl is a scaling coefficient 
(say 0.001). 

5 Sequential linear p r o g r a m m i n g  

Let x = {Xl,Z2,. . .  , Xn} T be a vector of design variables. 
Generally, an optimization problem may be defined as fol- 
lows: 

minimize: f(x),  (18a) 

subject to: gi(x) < 0, i =  1 , . . . , r ,  (18b) 

h j ( x ) = 0 ,  j = r + l , . . . , m ,  (18c) 

Pk < zk < qk, k = l , . . . , n ,  (18d) 

where f(x)  is an objective function, gi(x) are inequality con- 
straints, and hi(x) are equalitiy constraints. If an opti- 
mization problem requires maximization, we simply minimize 
-f(x). 

The original optimization problem may be approxi- 
mated by expanding the objective functions and con- 
straints in Taylor series at a feasible solution point x0 = 
{XOl , z02,.. . ,  XOn} T and ignoring terms of order higher than 
the linear ones. With this approximation, the optimization 
problem becomes 

minimize: f (x)  ~ f ( x 0 ) +  Vf(x0)T6x,  (19a) 

subject to: gi(x) ~ gi(x0) + Vgi(xo)Tbx < O, (19b) 

hi(x) ~ hj(x0) + RThj(xo)T6x = O, (19c) 

Pk <- Xk <- qk, (19d) 

where 3x = {x 1 - z01 , x 2 - x02, . . . ,  Zn - ZOn }T. A solution 
for the above equations may be easily obtained by the Sim- 
plex method (Kolman and Beck 1980). After obtaining an 
initial approximate solution for (19a)-(19d), say Xl, we can 
linearize the original problem, (18a)-(18d), at x 1 and solve 
the new linear programming problem. The process is re- 
peated until a convergent solution is obtained. This method 
leading to the optimal solution is usually termed the sequen- 
tial linear programming technique (Zienkiewicz and Champ- 
bell 1973; Vanderplaats 1984). 

Although the procedure for the sequential linear program- 
ming is simple, the optimum solution for the approximated 
linear problem may violate the constraint conditions of the 
original optimization problem. In addition, if the true op- 
timum solution of the nonlinear problem appears between 
two constraint intersections, a straightforward successive lin- 
earization may lead to an oscillation of the solution between 
the widely separated values. Difficulties in dealing with 

such problems may be avoided by imposing a "move limit" 
(Zienkiewicz and Champbell 1973; Vanderplaats 1984) on the 
linear approximation, which is a set of box-like admissible 
constraints placed on the range of 6x. In general, the choice 
of a suitable move limit depends on experience and also on 
the results of previous steps. Once a proper move limit is 
chosen at the beginning of  the sequential linear programming 
procedure, this move limit should gradually approach zero as 
the iterative process continues (Zienkiewicz and Champbell 
1973; Vanderplaats 1984; Esping 1984). 

The algorithm of the sequential linear programming with 
selected move limits may be summarized as follows: (1) lin- 
earize the nonlinear objective function and associated con- 
straints with respect to an initial guess x0; (2) impose move 
limits in the form of - a  < ( x -  x0) < b, where a and b 
are properly chosen lower and upper bounds; (3) solve the 
approximate linear programming problem to obtain an opti- 
mum solution Xl; (4) repeat the process by redefining x 1 with 
x 0 until either the subsequent solutions do not change signif- 
icantly (i.e. true convergence) or the move limit approaches 
zero (i.e. forced convergence). If the solution obtained is due 
to forced convergence, the procedures from (1) to (4) should 
be repeated with another initial guess. 

6 N u m e r i c a l  examples 

6.1 Buckling optimization of composite shell with one design 
variable 

In this section, a simply supported fiber-composite laminate 
cylindrical shell (Fig. 2) with laminate layup [:tz0/902/0]S un- 
der external hydrostatic compression p is investigated. The 
ends of the shell are closed and the uniform pressure loads ap- 
plied at two end surfaces are transferred into equivalent con- 
centrated ring loads applied at two circular edges. The shell is 
composed of graphite/epoxy and typical in-plane shear stress- 
strain curves are shown in Fig. 3. The objective of this study 
is to determine the optimal fiber angle 0 to maximize the 
buckling load Pcr of the shell and to compare the result of 
the optimization using a nonlinear shear formulation with 
that using a linear shear formulation. 

Based on the sequential linear programming, in each iter- 
ation the current linearized optimization problem becomes 

Opcr 
maximize: Pcr(0) ~ Pcr(00) + (0 - 00)--- ~ -  ]0=O0, (20a) 

subject to: 0 ° < 0 < 90 °, (20b) 

- r x q x 0 . 5  S < ( 0 - 0 0 ) < r  x qx0.5 S, (20c) 

where 00 is a solution in the current iteration. The symbols 
r and q are the size and the reduction rate of the move limit. 
In this study, the values of r and q are selected to be 10 ° 
and 0.9(N-I) ,  where N is the current iteration number. To 
control the oscillation of the solution, a parameter 0.5 S is 
introduced in the move limit (Hu and Wang 1992), where s 
is the number of sign changes for the derivative Opcr/O0 that 
has taken place before the current iteration. The deriva- 
tive Opcr/O0 may be approximated by using a forward finite- 
difference method as follows: 

OPcro0 ~ [ pcr(00 + AO)--Pcr(Oo)Jz~O ' (21) 
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Composite shell geometry: 

L = 20.32 cm 
D = 20.32 cm 

t = 1.27 cm 

Fig. 2. 
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Fig. 3. In-plane shear stress-strain curves for graphite/epoxy com- 
posite lamina 

Hence, two buckling analyses are required to compute Pcr(00) 
and Pcr(00 +A0) in each iteration. The value of A0 is selected 
to be 1 ° in most iterations. 

Important numerical results obtained in the optimization 
study are given in Fig. 4, which shows the fiber orientation 0 
and the associated critical buckling pressure Pcr determined 
in each iteration. The initial values of 0 are selected to be 
90 ° for both analyses using the linear and nonlinear shear 
formulations. For the solution based on the nonlinear shear 
formulation, after eleven iterations the optimal value of 0 
converges to 60.3 ° and the optimal critical buckling pressure 
converges to 175 MPa (true convergence). For the solution 
based on the linear shear formulation, after twelve iterations 
the optimal value of 0 converges to 60.8 ° and the optimal 
critical buckling pressure converges to 176 MPa (true con- 
vergence). 

Figure 5 shows the load-end displacement curves for the 
composite shells associated with the first iteration (initial 
guess) and the final iteration (optimal solution). It is clear 
that as the solution converges from the initial guess to the op- 
timal solution not only the critical buckling pressure of the 
shell is increased but also the postbuckling strength of the 
shell is greatly improved. Under the initial guess condition, 
all fibers are oriented in 0 ° and 90 ° directions. The shear 
stresses of the shell are primarily resisted by resin, the main 
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(b) Number of iterations N vs. critical pressure Pcr 
Fig. 4. Buckling optimization of the simply supported 
[=1:0/902/0]s composite shell under hydrostatic compression, (a) 
number of iterations N vs. fiber angle 9, and (b) number of iter- 
ations N vs. critical pressure Per 

subject causing the nonlinear shear. Hence, it is not surpris- 
ing to see that there is a significant reduction on the critical 
pressure and the postbuckling strength of the composite shell 
using the nonlinear shear formulation. Under the optimal so- 
lution condition, the fibers are oriented in 0 °, 60 °, -600 and 
90 ° directions. The shear stresses of the shell are resisted not 
only by resin but also by fibers. Consequently, the nonlinear 
shear effect is not expected to be significant and the buckling 
and the postbuckling behaviour of the composite shell using 
the nonlinear shear formulation are very similar to those of 
the shell using the linear shear formulation. 

6.2 Buckling optimization of the composite shell with two 
design variables 
In this section, the composite laminate shell with the same 
geometry, end condition and loading condition as that in 
the previous section but with unsymmetric laminate layup 
[:t:¢/902/02/002/:F 0] is investigated. The objectives of this 
study are to find the optimal fiber orientations ¢ and 0 to 
maximize the critical buckling pressure of the composite shell, 
and to examine the influence of the nonlinear shear and the 
unsymmetric laminate layup on the results of optimization. 

Based on the sequential linear programming, in each iter- 
ation the current linearized optimization problem becomes 

maximize: Pcr(¢, 0) ~ Pcr(¢0,00) + 

OPcr OPcr (22a) 
(¢ - ¢ 0 ) - ~ -  I¢=•o,e=eo + (0 - 00)--0- 7 I¢=¢0,0=e0, 

subject to: 0 ° < ¢ < 90 °, (22b) 
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0 ° < 0 < 9 0  ° , (22c) 

- r 1 x ql x 0.5 $1 _< ( ¢ -  ¢0) -< r l  x ql x 0.5 S1 , (22d) 

- r 2 x q2 x 0.5 $2 _ ( 0 - 0 0 )  _< r 2 x q2 x 0.5 $2,(22e) 

where ¢0 and 00 are the solutions in the current iteration. 
The values of r 1 and r 2 are selected to be 10 °. The values 

of ql and q2 are selected to be 0 .9 (N-I ) ,  where N is a cur- 
rent iteration number. The s 1 and s 2 are the numbers of 
sign changes for the derivatives OPcr/O¢ and Opcr/O0. These 
derivatives may be approximated with the following finite- 
difference forms: 
@or [Per(C0 + d e ,  00) - Pcr(¢0,00)] 
o-T ~ a ¢  ' (23a) 

OPcr [Per(C0, O0 -4- Z~O) -- Per(C0,00)] 
0--'O- ~ A0 (23b) 

Hence, three buckfing analyses are required to compute 
Pcr(¢0,00),Pcr(¢0 + A t , 0 0 )  and Pcr(¢0,00 + AO) in each it- 
eration. The values of A¢ and AO are selected to be 1 ° in 
most iterations. 

Important  numerical results obtained in the optimization 
study are given in Fig. 6, which shows the fiber conditions 
¢ and 0, and the associated critical buckling pressure Pcr 
determined in each iteration. The initial values of ¢ and 
0 are selected to be 90 ° for both solutions using the linear 
and nonlinear shear formulations. For the solution based on 
the nonlinear shear formulation, after thirteen iterations the 
optimal values of ¢ and 0 converge to 900 and 53.7 °, respec- 
tively, and the optimal critical buckling pressure converges to 
187 MPa (true convergence). For the solution based on the 
linear shear formulation, after twelve iterations the optimal 
values of ¢ and 0 converge to 90 ° and 53.9 °, respectively, and 
the optimal critical buckling pressure converges to 188 MPa 
(true convergence). 
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Fig. 5. Load-end displacement curves for the simply supported 
[-4-0/902/0]s composite shell under hydrostatic compression 

Figure 7 shows the load-end displacement curves for the 
composite shells associated with the first iteration (initial 
guess) and the final iteration (optimal solution). Again, as 
the solution converges from the initial guess to the optimal 
solution not only the critical buckling pressure of the shell 
is increased but also the postbuckling strength Of the shell is 
greatly improved. Under the initial guess condition, there is a 
significant reduction on the critical buckling pressure and the 
postbuckling strength of the composite shell using the nonlin- 
ear shear formulation. However, under the optimal solution 
condition, the buckling and the postbuckling behaviours of 
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Fig. 6. Buckling optimization of the simply supported [4-q~/902/02 
/902/=F0] composite shell under hydrostatic compression, (a) num- 
ber of iterations N vs. fiber angles ~ and 0, and (b) number of 
iterations N vs. critical pressure Per 
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Fig. 7. Load-end displacement curves for simply supported 
[=]=¢/902/02/90~ / q= 0] composite shell under hydrostatic compres- 
sion 

the composite shell using the nonlinear shear formulation are 
very similar to those of the shell using a linear shear formu- 
lation. 

Figure 8 shows the load-end displacement curves under 
optimal fiber angle conditions for the composite shells" with 
[4-0/902/0]8 and [4-0/902/02/902/~ 0] laminate layups. It 
can be seen that  under optimal fiber angle conditions (no 
matter  which shear formulation was used) the buckling and 
the postbuckling strengths of the. composite shell with the un- 
symmetric laminate layup are significantly higher than those 
of the shell with the symmetric laminate layup. In the design 
of composite structures, unsymmetric composite laminates 
are seldom used because of the bending-extensional coupling 
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effect. However, this example shows that it is beneficial to 
adopt an unsymmetric laminate layup (having more design 
degrees of freedom) to increase the buckling and the post- 
buckling strengths of the composite shell. 

240 , • . - . . . .  

200 - - . . . . . . .  

2~ 12016080 - . . . . . . . . . . . . . . . . . . .  "'"'"'""'" 
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0 I i I i I , I , I f 

-1.2 - 1 -0.8 -0.6 -0.4 -0.2 0 
End displacement (cm) 

(a) with nonlinear shear formulation 
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0 i I i I i I , I i I , 

-1.2 - 1 -0.8 -0.6 -0.4 -0.2 0 
End displacement (cm) 

(b) with linear shear formulation 
Fig. 8. Load-end displacement curves under optimal fiber an- 
gle conditions for simply supported composite shells under hydro- 
static compression with symmetric layup [=t=8/902/0]s and with 
unsymmetric layup [=t=¢/902/02/90z/q= 8] 

7 Conclusions 

From the optimization results obtained in this study, the fol- 
lowing conclusions can be drawn. 

1. For the optimization of simply supported composite 
shells subjected to external hydrostatic compression with 
[±0/902/0]S and [±¢/902/02/902/=F/9] laminate layups, 
the optimal fiber angles 0 and ¢ obtained by using the non- 
linear in-plane shear formulation are very close to those 
obtained by using the linear in-plane shear formulation. 

2. For simply supported composite shells with [±0/902/0]S 
and [±¢/902/02/902/q= 0] laminate layups, under initial 
guess conditions, the buckling and postbuckling strengths 
of the composite shell using the nonlinear in-plane shear 
formulation may be significantly lower than those of the 
shell using the linear in-plane shear formulation. This is 

. 

because under initial guess conditions (with ¢ = /9 = 
90°),all the fibers orient in 0 ° and 90 °, and the compos- 
ite shell is weak in resisting in-plane shear. Therefore, the 
nonlinear shear effect is significant. However, under opti- 
mal fiber angle conditions the buckling and the postbuck- 
ling behaviour of the composite shell using the nonlinear 
shear formulation are very similar to those of the shell us- 
ing the linear shear formulation. This is because under op- 
timal fiber angle conditions, there are some fibers oriented 
between 0 ° and 90 °, and the composite shell is strong in 
resisting in-plane shear. Hence; the nonlinear shear effect 
is not significant. 
Under optimal fiber angle conditions (no matter which 
shear formulation was used) the buckling and postbuckling 
strengths of the composite shell with the unsymmetric lam- 
inate layup [-t-¢/902/02/902/q= O] are significantly higher 
than those of the shells with the symmetric laminate layup 
[±0190210]S. 
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