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ABSTRACT: A nonlinear material constitutive model, including a 
nonlinear in-plane shear formulation and a failure criterion, for fiber- 
composite laminate materials is employed to carry out finite-element 
buckling analyses for composite shells under hydrostatic compressive 
loads. It has been shown that the nonlinear in-plane shear together 
with the failure criterion have significant influence on the buckling 
behavior of composite shells. 
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nificant for composite materials, this work is therefore focusing 
on the influence of the in-plane shear nonlinearity together with 
a failure criterion on the buckling response of composite shells. 

In this paper, a material model including the nonlinear in- 
plane shear and the Tsai-Wu failure criterion is reviewed first. 
Then, buckling analyses with this nonlinear material model for 
simply supported composite shells under hydrostatic compression 
are carried out using the ABAQUS finite element program [13]. 
Numerical results for the material nonlinear buckling behavior 
of these composite shells are compared with those using linear 
material properties. Finally, important conclusions obtained from 
this study are given. 

Due to the high stiffness-to-weight ratio, the use of fiber- 
reinforced composite materials in advanced shell structures, such 
as submarine pressure hulls, missile nozzles, aircraft fuselages, 
and satellite antennas, has increased rapidly in recent years. The 
composite shell structures are commonly subjected to various 
kinds of compressive loading, which may cause buckling, There- 
fore, knowledge of the buckling and postbuckling behavior of 
composite shells has become essential in design. In the literature, 
most stability studies of composite laminate shells have been 
limited to the geometrically nonlinear analysis [1-3]. Little at- 
tention has been paid to the material nonlinearity. 

It is well known that unidirectional fibrous composites exhibit 
severe nonlinearity in in-plane shear stress-strain relation. In 
addition, deviation from linearity is also observed in in-plane 
transverse loadings but the degree of nonlinearity is not com- 
parable to that in the in-plane shear [4]. For graphite/epoxy and 
boron/epoxy, this nonlinearity associated with the transverse 
loadings can usually be ignored [5]. 

A significant number of macromechanical models have been 
proposed to represent the constitutive relation of fiber-composite 
materials such as nonlinear elasticity models [4,6, 7], or plasticity 
models [8-11]. In addition, various failure criteria have also been 
proposed to predict the onset of failure in single layer of fiber- 
reinforced composites, such as the maximum strain theory, max- 
imum stress theory, Tsai-Wu theory, Hoffman theory, etc. [12]. 
The mechanical response of fiber-composite materials is very 
complicated. Since the nonlinearity of the in-plane shear is sig- 

1Associate professor, Department of Civil Engineering, National Cheng 
Kung University, Tainan, Taiwan 70101, R.O.C. 

Constitutive Modeling of Single Lamina 

For fiber-composite laminate materials, each lamina can be 
considered as an orthotropic layer in a plane stress condition. 
The incremental constitutive matrices for a linear orthotropic 
lamina in the material coordinates (Fig. 1) can be written as 

a{,r'} = [Q;IMd} (1) 

A{'r'} = [Q;]A{~/} (2) 

where A{cr'} = A{cr,, tr2, r lJ  r, A{r;} = A{r13, ~23} r, A{e'} = A{el, 
e2, %2} r, A{'V'} = A{%3, %3} r are incremental stress and strain 
components, and 

I Ell v12Ez2 0 1 1 - v~2v2~ 1 - -  1~121,~21 

vmEn E22 0 (3) 
[Q~] = 1 - v12v21 1 - vlzv2: 

0 0 G12 

where ~1 and et2 are the shear correction factors [14] and are 
taken to be 5/6 in this study. 

To model the nonlinear in-plane shear behavior, the nonlinear 
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FIG. l--Material and element coordinate systems for fiber composite 
laminate. 

strain-stress relation for a composite lamina suggested by Hahn 
and Tsai [4] is adopted in this study, which is given as follows: 

I 1 1)21 
Ell E22 

P12 1 

Ell E22 

0 0 

Cr 1 

t°l + S6~'r~2 0 
I.'1"12.1 

(5) 

In this equation only one material constant $6666 is required to 
account for the in-plane shear nonlinearity. The value of $6666 
can be determined by a curve fit to various off-axis tension test 
data [4]. By inverting and differentiating Eq 5, the nonlinear 
incremental constitutive matrix for the lamina becomes 

[Qi] = 

I Ell vt2E22 0 l 1 - vtzvz~ 1 - va2vzl 

VzIEll Ezz 0 
1 - v12v21 1 - vlzvzl 

1 

0 0 1/G12 + 3S6666'r~2 

(6) 

Failure Criterion and Degradation of Stiffness 

Among existing failure criteria, the Tsai-Wu criterion [15] has 
been extensively used in literature and it is adopted in this anal- 
ysis. Under plane stress conditions, this failure criterion has the 
following form 

FlO'l "~ F20" 2 + FllO'~l -1- 2/712o"10"2 + Fzzor2 z + F66(~22 = 1 (7) 
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where 
1 1 1 1 - I  

F1 = ~( + X--7, Fz = ~ + ~7, FH = X X "  

- 1  1 
F:2 - y y , ,  F66 = 

The X, Y and X' ,  Y' are the lamina longitudinal and transverse 
strengths in tension and compression, respectively, and S is the 
shear strength of the lamina. Though the stress interaction term 
F12 in Eq 7 is difficult to be determined, it has been suggested 
by Narayanaswami and Adelman [16] that F~z can be set equal 
to zero for practical engineering applications. Therefore, F12 = 
0 is used in this investigation. 

During the numerical calculation, incremental loading is ap- 
plied to composite shells until failure in one or more of the 
individual plies is indicated according to Eq 7. Since the Tsai- 
Wu criterion does not distinguish failure modes, the following 
two rules are used to determine whether the ply failure is caused 
by resin fracture or fiber breakage [•2]: 

(1) If  a ply fails but the stress in .the fiber direction remains 
tess than the uniaxial strength of the lamina in the fiber direction, 
i.e. X '  < trl < X, the ply failure is assumed to be resin induced. 
Consequently, the laminate loses its capability to support trans- 
verse and shear stresses, but remains to carry longitudinal stress. 
Under this condition, the degraded constitutive matrix of a com- 
posite lamina becomes: 

FEll 0 i] 
I  J=l° o° (s) 

(2) If a ply fails with tr 1 exceeding the uniaxial strength of the 
lamina, the ply failure is caused by fiber breakage and total ply 
rupture is assumed. Under this condition, the degraded consti- 
tutive matrix of a composite lamina becomes: 

[Q;I = 0 
0 

(9) 

Constitutive Modeling of Composite Shell Section 

The elements used in the finite-element analyses are eight- 
node isoparametric shell elements with six degrees of freedom 
per node (three displacements and three rotations). The for- 
mulation of the shell allows transverse shear deformation [13,17] 
and these shear flexible shells can be used for both thick and 
thin shell analysis [13]. 

During a finite element analysis, the constitutive matrix of 
composite materials at the integration points of shell elements 
must be calculated before the stiffness matrices are assembled 
from the element level to the structural level. For fiber-composite 
laminate materials, the incremental constitutive equations of a 
lamina in the element coordinates (x, y, z) can be written as 

A{~r} : [Q,]A{e} (10) 

A{%} = [Q2]A{%} (11) 
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where A{cr} = A{¢, ,  Cry, %y}r, A{r,} = A{%~, Ty=} r, A{e} = A{e~, 
~,  ~,}~, a{~,} = a{-y~, v . V ,  

[Q,] = [T,]'r[Q;][T,] (12) 

[Od = [Td~[Q;I[Td (13) 

cos2+ sin2~b sin+ cos+ ] 
[T,] = sin2<b cos2+ - sin+ cos6 ] 

- 2  sin+ cos6 2 sin6 cos6 cos2+ - sin26] 
(14) 

cos+ s in+]  
[T2] = [_-sin+ cos6J (15) 

and 6 is measured counterclockwise from the element local x- 
axis to the material 1-axis. 

Assume A{eo} = A{e/o, eyo, "yxyo} r are the incremental in-plane 
strains at the mid-surface of the section and A{K} = A{K~, Ky, 
K~y} r are the incremental curvatures. The incremental in-plane 
strains at a distance z from the mid-surface of the shell section 
become 

a{e} : a{~o} + za{ .}  (16) 

Let h be the total thickness of the shell section, the incremental 
stress resultants, A{N} = A{N~, Ny, N~y} r, A{M} = A{M~, My, 
M~y} r and A{V} = A{V~, Vy}, can be defined as 

a{N}-i f a{~} / a{M}  = I z a l c r I } d z  
a{VIJ ~- '~ t a{.,} J 

hi2 f [Q,](A{eo} + zA{K}) ) P 
= J-h/Z ~z[Q,](A{eo} + zA{K})}dz 

L [Oda{-¢,} J 

rlo, l  z[Q,] [01 ] f a { ~ o } l  

[0] r [Q2]J ( A{"/,} ) 
(17) 

where [0] is a 3 by 2 matrix with all the coefficients equal to 
zero. 

For the nonlinear material case, the [Q'~] matrix in Eq 12 can 
be taken from Eqs 6, 8, or 9 and the incremental stress resultants 
of Eq 17 can be obtained by a numerical integration through the 
thickness of the composite shell section. For the linear material 
case, the [Q~] matrix used in Eq 12 is taken from Eq 3 and the 
incremental stress resultants of the shell section can be written 
as a summation of integrals over the n laminae in the following 
form 

{ a{~-i  

a { v } J  

(z,,- z~)[g,l ~(z,, - z~)[(2,] 

= ~(z~-z~b)[Q,] 1 a ](z;  - zTb)la, ] 

[OF [0V 

'0' ]) 
[01 

(zi, - zj~)[Q2] 

{ a{~o}) 
a{.} } (18) 
a(,~,}J 

where zj, and Zjb are distances from the mid-surface of the section 
to the top and the bottom of the j-th layer, respectively. 

Nonlinear Finite Element Analysis 

In the ABAQUS finite element program, the nonlinear re- 
sponse of a structure is modeled by an updated Lagrangian for- 
mulation and a modified Riks nonlinear incremental algorithm 
[18] can be used to construct the equilibrium solution path. To 
model bifurcation from the prebuckling path to the postbuckling 
path, geometric imperfections of composite shells are introduced 
by superimposing a small fraction (say, 0.001 of the shell thick- 
ness) of the lowest eigenmode determined by a linearized buck- 
ling analysis to the original nodal coordinates of shells. 

Numerical Analyses 

Composite Shells with [90/012 s and [45/-4512s Layups 

In this section, fiber-composite laminate cylindrical shells with 
two laminate layups, [90/012s and [45/-4512s, are analyzed. The 
thickness of each ply is 1.02 mm. The material used for the 
analysis is graphite epoxy. Ply constitutive properties and shell 
geometries are given in Fig. 2. The linear and nonlinear in-plane 
shear stress-strain curves for a typical lamina are shown in Fig. 
3. Both shells are subjected to uniform hydrostatic compression 
in the radial and axial directions. The ends of the shells are simply 
supported, which prevents radial motions but allows movements 
in axial direction. In addition, displacement constraints are en- 
forced at the ends so that each point on the end of the cylinder, 
around the circumference, displaces axially the same amount. In 
the numerical analysis, the entire shell is modeled by 100 shell 
elements. The pressure applied at the closed end surfaces are 
transformed into equivalent ring loads applied at the edges. 

To estimate the buckling loads and to generate geometric im- 
perfections for composite shells, linearized buckling analyses are 
carded out first. The linearized buckling loads and buckling modes 
are shown in Fig. 4. It can be seen that the buckling modes of 
the composite shells are sensitive to laminate layups. 

The load-displacement curves for the shell with a [90/0]zs layup 
are plotted in Fig. 5. The vertical axis is the hydrostatic pressure 
(positive value means compression) applied to the shell and the 
horizontal axis is the end displacement (positive value means end 
extension and negative value means end shortening). It can be 
seen that the behaviors of the shell predicted by using the linear 
and the nonlinear in-plane shear formulations are almost the 
same in the prebuckling stage. However, the postbuckling strength 
of the shell calculated using the nonlinear in-plane shear for- 
mulation is much lower than that calculated using the linear in- 
plane shear formulation. For the analysis carried out using the 
nonlinear in-plane shear formulation together with the Tsai-Wu 
criterion, the composite shell fails immediately after the buckling 
of shell occurs. The computed failure load is very close to the 
linearized buckling load. 

Figure 6 plots the load-displacement curves for the shell with 
a [45/ -  45]zs layup. With this kind of laminate layup, each lamina 
in the composite shell is subjected to severe shear loading. There- 
fore, it is a good sample to test the influence of nonlinear in- 
plane shear and failure theory on the buckling behavior of the 
shell. For the analysis carried out using the linear shear for- 
mulation, the shell exhibits end extension before buckling occurs. 
However, after buckling takes place, the amount of end exten- 
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F I G .  2--Geometric and material properties for graphite~epoxy com- 
posite laminate shell. 
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sion starts to reduce. For the analysis with the nonlinear in-plane 
shear formulation alone, the shell exhibits very nonlinear be- 
havior throughout the entire loading stage. The stiffness and the 
load carrying capacity for the shell with the nonlinear in-plane 
shear formulation are much less than those with the linear shear 
formulation. For the analysis carried out using the nonlinear in- 
plane shear formulation together with the Tsai-Wu criterion, the 
shell exhibits a sudden failure mode while the loading is very 
low. The predicted failure strength of the composite shell is only 
about 62% of the linearized buckling load. 

Composite Shells with [ +. O/90lO]s Layups 

In this section, the [_+ O/90/O]s composite laminate shells are 
analyzed. The geometric and material properties, loading, and 
finite element mesh of the shells are the same as those in the 
previous section. 

Figures 7 to 13 show the load-displacement curves, computed 
using the nonlinear in-plane shear formulation together with the 
Tsai-Wu criterion, for composite shells with various 0 angles. 
For shells with 0 angles equal to 0 °, 30°,'60 °, and 90 ° (i.e., Figs. 
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FIG. 9--Load-displacement curves for composite shell with [ +-30/90/ 
O]s layup under hydrostatic compression. 
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FIG. 7--Load-displacement curves for composite shell with [ +-0/90/ 
O]s layup under hydrostatic compression. 
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FIG. 13--Load-displacement curves for composite shell with [ +- 90/90/ 
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7, 9, 11, and 13), additional load-displacement curves computed 
using the linear and nonlinear in-plane shear formulations are 
also plotted. 

From Figs. 7, 9, 11, and 13, one cansee that the nonlinear in- 
plane shear alone has very little influence on the prebuckling 
response and the buckling strength of these shells. However, its 
influence on the postbuckling responses of these shells depends 
on the 0 angle. For instance, when 0 angle is equal to 0 ° or 90 ° 
(Figs. 7 and 13), the influence of nonlinear in-plane shear on the 
postbuckling response of the shell is significant. On the other 
hand, when 0 angle is equal to 30 ° or 60 ° (Figs. 9 and 11), the 
influence of nonlinear in-plane shear on the postbuckling re- 
sponse of the shell is little. 

For the analysis carried out using the nonlinear in-plane shear 
formulation together with the Tsai-Wu criterion, all the com- 
posite shells exhibit sudden failure before or immediately after 
the buckling occurs (Figs. 7 to 13). In Fig. 14 the predicted 
ultimate strengths of the composite shells using the nonlinear 
shear formulation together with the Tsai-Wu criterion are com- 
pared with those obtained by the linearized buckling analyses. 
From this figure, one can see that the predicted ultimate strengths 
of the shells with 0 between 0 ° and 40 ° and with 0 close to 90 ° 
are very close to the linearized buckling loads. On the other 
hand, the predicted ultimate strengths of the shells with 0 be- 
tween 50 ° and 80 ° are much lower than the linearized buckling 
loads. It can also be observed that the optimal fiber angle 0 for 
the shells with the material nonlinear analysis is very close to 
the optimal fiber angle for the shells with linearized buckling 
analysis, which is about 60 ° for both cases. 

C o n c l u s i o n s  

For the material nonlinear analysis of composite shells with 
various laminate layups and subjected to hydrostatic compres- 
sion, the following conclusions can be drawn: 

(1) The nonlinear in-plane shear alone has very little influence 
on the prebuckling response and the buckling strengths of the 
shells with [90/012s and [_+ O/90/O]s layups. However, its effect on 
the reduction of postbuckling strengths of these shells depends 
on the laminate layups. 

(2) The nonlinear in-plane shear together with material failure 
according to the Tsai-Wu failure theory has very little influence 
on the prebuckling stiffnesses of the shells with [90/012s and [-+ 0/ 
90/0]s layups. However, its effect on the reduction of ultimate 
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strengths of these shells depends on the laminate layups. In ad- 
dition, these shells exhibit sudden failure before or immediately 
after the buckling occurs. 

(3) The nonlinear in-plane shear alone has significant influence 
on the prebuckling response as well as the postbuckling response 
of the shell with a [45/-4512s layup. In addition, if the Tsai-Wu 
criterion is considered, the predicted ultimate strength of the 
composite shell is much lower than the linearized buckling load 
and the shell exhibits a sudden failure mode. 

Acknowledgment 

The author wishes to express his appreciation to Dr. Su Su 
Wang, the Distinguished University Professor of the University 
of Houston, Texas, for his encouragement and fruitful discussion 
during the early stage of this study. This work was financially 
supported by the National Science Council of the Republic of 
China under Grant  NSC 82-0401-E-006-374. 

References 

[1] Leissa, A. W., "Buckling of Laminated Plates and Shell Panels," 
Technical Report AFWAL-TR-85-3069, Air Force Wright Aero- 
nautical Laboratories, Wright-Patterson Air Force Base, OH, 1985. 

[2] Knight, N. F. and Starnes, J. H., "Postbuckling Behavior of Axially 
Compressed Graphite-Epoxy Cylindrical Panels with Circular Holes," 
Journal of Pressure Vessel Technology, ASME, Vol. 107, 1985, pp. 
394-402. 

[3] Hong, C. S. and Jun, S. M., "Buckling Behavior of Laminated 
Composite Cylindrical Panels under Axial Compression," Com- 
puters and Structures, Vol. 29, 1988, pp. 479-490. 

[4] Hahn, H. T. and Tsai, S. W., "Nonlinear Elastic Behavior of Uni- 
directional Composite Laminae," Journal of Composite Materials, 
Vol. 7, 1973, pp. 102-118. 

[5] Jones, R. M. and Morgan, H. S., "Analysis of Nonlinear Stress- 
Strain Behavior of Fiber-Reinforced Composite Materials," A1AA 
Journal, Vol. 15, 1977, pp. 1669-1676. 

[6] Hashin, Z., Bagchi, D., and Rosen, B. W., "Non-Linear Behavior 

of Fiber Composite Laminates," NASA Contractor Report, NASA 
CR-2313, 1974. 

[7] Hajali, R. and Wang, S. S., "Nonlinear Behavior of Fiber Com- 
posite Materials and Its Effect on the Postbuckling Response of 
Laminated Plates," Technical Report U1UC-NCCMR-90-10, Na- 
tional Center for Composite Materials Research, University of 
Illinois, Urbana, IL, 1990. 

[8] Sun, C. T. and Chen, J. L., "A Simple Flow Rule for Characterizing 
Nonlinear Behavior of Fiber Composites," Journal of Composite 
Materials, Vol. 23, 1989, pp. 1009-1020. 

[9] Vaziri, R., Olson, M. D., and Anderson, D. L., "A Plasticity-Based 
Constitutive Model for Fibre-Reinforced Composite Laminates," 
Journal of Composite Materials, Vol. 25, 1991, pp. 512-535. 

[10] Nanda, A. and Kuppusamy, T., "Three-Dimensional Elastic-Plastic 
Analysis of Laminated Composite Plates," Composite Structures, 
Vol. 17, 1991, pp. 213-225. 

[11] Arnold, R. R. and Mayers, J., "Buckling, Postbuckling, and Crip- 
pling of Materially Nonlinear Composite Plates," International Jour- 
hal of Solids and Structures, Vol. 20, 1984, pp. 863-880. 

[12] Rowlands, R. E., "Strength (Failure) Theories and Their Experi- 
mental Correlation," Failure Mechanics of Composites, G. C. Sih 
and A. M. Skudra, Eds., Elsevier Science Publishers, The Neth- 
erlands, 1985, pp. 71-125. 

[13] Hibbitt, Karlsson, and Sorensen, Inc., ABA QUS User Manual, Ver- 
sion 4-8, Providence, RI, 1991. 

[14] Mindlin, R. D., "Influence of Rotatory Inertia and Shear on Flex- 
ural Motions of Isotropic, Elastic Plates," Journal of Applied Me- 
chanics, Vol. 18, 1951, pp. 31-38. 

[15] Tsai, S. W. and Wu, E. M., "A General Theory of Strength for 
Anisotropic Materials," Journal of Composite Materials, Vol. 5, 
1971, pp. 58-80. 

[16] Narayanaswami, R. and Adelman, H. M., "Evaluation of the Ten- 
sor Polynomial and Hoffman Strength Theories for Composite Ma- 
terials," Journal of Composit e Materials, Vol. 11, 1977, pp. 366- 
377. 

[17] Irons, B. M., "The Semi-Loof Shell Element," Finite Elements for 
Thin Shells and Curved Members, D. G. Ashwell and R. H. GaP 
lagher, Eds., John Wiley and Sons, London, U.K., 1976, pp. 197- 
222. 

[18] Riks, E., "An Incremental Approach to the Solution of Snapping 
and Buckling Problems," International Journal of Solids and Struc- 
tures, Vol. 15, 1979, pp. 529-551. 


