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Optimization for buckling resistance of fiber- 
composite laminate shells with and without 

cutouts 

Hsuan-Teh Hu & Su Su Wang 
National Center for Composite Materials Research, College of Engineering, University of Illinois, Urbana, Illinois 61801, USA 

A sequential linear programming method with a simple move-limit strategy is 
used to investigate the following three important buckling optimization 
problems of composite shells: (1) optimization of fiber orientations for 
maximizing buckling resistance of composite shells without cutouts; (2) optimi- 
zation of fiber orientations for maximizing buckling resistance of composite 
shells with circular cutouts; and (3) optimization of cutout geometry for maxi- 
mizing buckling resistance of a composite shell. From the results of optimiza- 
tion study, it has been shown that, given a structural geometry, loading 
condition and material system, the buckling resistance of a cylindrical 
composite shell is strongly influenced by fiber orientations, end conditions, the 
presence of cutout and the geometry of cutout. 

1 INTRODUCTION 

Applications of fiber composite materials to 
advanced shell structures such as aircraft 
fuselages, deep submersibles and surface ships 
have increased rapidly in recent years. The fiber 
composite shell structures often contain complex 
layups and cutouts, as a result of practical needs. 
These composite laminate shells in service are 
commonly subjected to various kinds of external 
loading. Structural instability becomes a major 
concern in safe and reliable design of the 
advanced composite shells. 

It is well known that buckling strength of fiber 
composite structures depends on various lamina- 
tion parameters, such as ply Orientations, 1-6 and 
geometric variables, such as structural configura- 
tions. 6-9 Therefore, proper selection of appro- 
priate lamination and geometric variables for a 
given composite material system to realize its 
maximum structural buckling strength becomes a 
crucial problem. Also, reduction in buckling 
resistance of fiber composite structures because 
of the introduction of cutouts is of significant con- 
cern. The size, geometry and location of a cutout 
generally dictate the stability of the composite 
shell. 9-12 Consequently, the optimal configuration 
of a cutout in a fiber composite shell needs to be 

determined so that its structural buckling strength 
can be maximized. 

Research on the subject of structural optimiza- 
tion has been reported by many investigators. ~3 
However, applications of optimization methods to 
stability analysis and design of complex fiber com- 
posite shell structures have been very limited. In 
this paper, a sequential linear programming 
method 14-16 is briefly reviewed in Section 2. This 
method and its associated algorithm are used to 
study the following important composite struc- 
tural stability problems: (1) optimization of fiber 
orientations for maximizing buckling resistance of 
composite shells without cutouts; (2) optimization 
of fiber orientations for maximizing buckling 
resistance of composite shells with circular 
cutouts; and (3) optimization of cutout geometry 
for maximizing buckling resistance of a composite 
shell. Important conclusions obtained from the 
study are given in Section 4. 

3 

2 METHOD OF APPROACH 

A general optimization problem may be defined 
as the following: 

Minimize: f(x) (la) 
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Subjectto: gi(x)-<0, i = 1 ..... r (lb) 

h / (x )=O, j=r+ 1,.. . ,m (lc) 

pk <Xk <q, ,  k =  1 . . . . .  n (ld) 

where f(x) is an objective function, gi(x) are 
inequality constraints, h/(x) are equality con- 
straints, and x={x l ,  x2,. . . ,xnl r is a vector of 
design variables. Any function fwhich satisfies the 
above constraints is called an admissible function. 
The set of all admissible functions is called the 
admissible space. If a particular optimization 
problem requires maximization, we simply mini- 
mize -f(x) .  

2.1 Linearization 

The basic concept of a sequential linear program- 
ming is that, given a feasible solution 
Xo={Xol, xo2,...,Xo~} r for an optimization 
problem, a linear programming method may be 
established by expanding the nonlinear functions 
about x0 in a Taylor series, and ignoring terms of 
order higher than the linear ones in the expansion. 
With this approximation, the optimization 
problem, eqns ( la)-(ld), becomes 

Minimize: f(x) ~-f(xo)+ Vf(xo)rbx (2a) 

Subject to: gi(x)--gi(Xo)+Vgi(xo)rt~x<-O (2b) 

h/(x) ~- h/(x0) + Vh/(xo)'Ox = 0 (2c) 

pk < x,  <-- qk (2d) 

where i = l , . . . , r ;  j = r + l  ..... m; k = l  ..... n; 
6 x  = { x l  - x 0 t ,  x 2  - x 0 2 , . . . , x ,  - x, , , ,} /~ 

It is clear that eqns (2a)-(2d) represent a linear 
programming problem where variables are con- 
tained in the vector space 6x. The functions f(x0), 
gi(Xo) and h/(x0) and their gradients Vf(x0), Vgi(x0) 
and Vh/(xo) are all constants. A solution for eqns 
(2a)-(2d) may be easily obtained by the Simplex 
method, t7 After obtaining an initial approximate 
solution for eqns (2a)-(2d), say xl, we can 
linearize the original problem, eqns (la)-(ld),  at 
x~ and solve the new linear programming 
problem. The process is repeated until a con- 
vergent solution is obtained. 

2.2 Move limit 

Although the procedure for a sequential linear 
programming is simple, difficulties may arise 
during the iterations. First, the optimum solution 
for the approximate linear problem may violate 
the constraint conditions of the original optimiza- 

tion problem. Second, in a nonlinear problem, the 
true optimum solution may appear between two 
constraint intersections. A straightforward succes- 
sive linearization in such a case may lead to an 
oscillation of the solution between the widely 
separated values. Difficulties in dealing with such 
a problem may be avoided by imposing a 'move 
limit' on the linear approximation. ~4-'6 

The concept of a move limit is that a set of box- 
like admissible constraints are placed in the range 
of 6x. It is known that computational economy 
and accuracy of the approximate solution may 
depend greatly on the choice of the move limit. (If 
the move limits are made too small, solution con- 
vergence may be very slow. If they are too large, 
oscillations may occur.) In general, the choice of a 
suitable move limit depends on experience and 
also on the results of previous steps. Once a 
proper move limit is chosen at the beginning of 
the sequential linear programming procedure, this 
move limit should gradually approach zero as the 
iterative process continues. ~ 4,, ~. 1 ~q 

2.3 Numerical algorithm 

The algorithm of a sequential linear programming 
with selected move limits may be summarized as 
follows: 

(1) Linearize the nonlinear objective function 
and associated constraints with respect to 
an initial guess x 0. 

(2) Impose move ILmits in the form of 
-L<(x-xo) -<U,  where L and U are 
properly chosen positive constraints, which 
approach zero gradually, when the iteration 
number in the sequential linear program- 
ming process becomes large. 

(3) Solve the approximate linear programming 
problem to obtain an initial optimum solu- 
tion x~. 

(4) Repeat the process by r e d e ~  x I with x0 
until either the subsequent solutions do not 
change significantly (i.e, true convergence) 
or the move limit approaches zero (i.e. 
forced convergence). 

3 OPTIMIZATION FOR: COMPOSITE 
SHELL BUCKLING 

The sequential linear programming method 
described above is used to conduct various 
optimization studies on buckling resistance of 
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fiber composite laminate cylindrical shells with 
and without cutouts, which are subjected to 
external hydrostatic loading. The composite 
laminate shells analyzed in the following sections 
all have the same structural geometry and ply con- 
stitutive properties. The composite shells have 
similar ply layups, i.e. [+ 0/902/0]J0s , and are 
subjected to external hydrostatic compression. In 
the present study, the objective function for all the 
problems is the critical buckling pressure P~r- 
Also, separate buckling analyses of the composite 
shells in the first two problems are carried out for 
the purposes of comparison and verification of 
solution accuracy. 

3.1 Optimization of fiber orientations for fiber 
composite shells without cutouts 

t.. L r t] 
P 

1 p 
P 

Laminate layup:  Ply constitutive properties: 
[+-T-0/902/0]10S E l i  -- 138000 MPa 

E22 = 1451)0 MPa 
Composi te  shell geometry: GI2  = GI3 = 5870 MPa 

L = 40.64 cm. (16 in.) G23 = 3520 MPa 
D = 20.32 era. (8 in.) v12 ~ 0.21 
t = 1.27 era. (0.5 in.) 

Loading: 
Cutout geometry (circular hole): p' = 3.75 p 

d = 5.08 era. (2 in.) 

Fig. 1. Cylindrical composite laminate shell with circular 
cutout. 

In this problem, fiber composite laminate cylindri- 
cal shells (Fig. 1) with three different end condi- 
tions, i.e. fixed, simply supported, and free ends, 
are investigated. In all of these cases, the shells do 
not contain any cutouts (d-- 0). The objective is to 
determine the optimal fiber angle 0 to maximize 
the buckling resistant pressure Per of the com- 
posite laminate shell in each case studied. 

Based on the sequential linear programming 
method, in each iteration the current, linearized 
optimization problem becomes 

0P" I Maximize: per(O)'~per(O,,)+(O--00)-~ ~oo,, 

(3a) 

Subject to: 0o:~0<90 * (3b) 

I ( 0 -  O0)] < r x  q x 0.5 s (3c) 

where 00 is a solution in the current iteration, and 
r and q in eqn (3c) are size and reduction rate of 
move limit. In the present study, the values of r 
and q are selected to be 18" and 0.8 IN- '), where N 
is a current iteration number. To minimize the 
oscillation of the solution, a tolerance-limit 
parameter 0.5 s is introduced in the move limit, 
where s is the number of oscillations of the deriva- 
tive OPer/O0 that have taken place before the 
current iteration. The value of s increases by one 
if the sign of Oper/O0 changes. The use of this 
parameter is similar to that in the bisection 
method) 9 Whenever oscillation of the solution 
occurs, the range of the move limit is reduced to 
half of its current value. This increases the 
solution convergent rate considerably. 

To evaluate the buckling pressure Per(00) of the 
composite laminate shell, the ABAQUS finite- 
element program 2° is used for the linearized 
buckling problem. In the present analysis, the 
structure is modeled by eight-node, isoparametric 
laminate shell elements. 

We remark that the derivative Opcr/O0 in eqn 
(3a) may be approximated by using a forward 
finite-difference method with the following form: 

O P c r  [Pcr(00+ AO)--pcr(Oo)] 
00 A0 (4) 

To determine the value of Oper/O0 in eqn (4) 
numerically, two incremental analyses are needed 
to compute Per(00) and Per(00 + A0) in each itera- 
tion. In this example, the value of A 0 is selected to 
be 1 ° in most iterations. 

Some of the important numerical results 
obtained are given in Fig. 2. The initial values of 0 
are selected to be 0 ° for the [ :t: 0/902/0h0s shells 
with fixed ends and with simply supported ends, 
and 10 ° for the shell with free ends. The buckling 
pressure Per associated with each A0 is deter- 
mined in the iteration. After 11 iterations, the 
optimal value of 0 converges to 50.4 ° for the shell 
with fixed ends, 47.5 ° with simply supported ends, 
and 90 ° with free ends. Buckling modes of these 
shells associated with the first iteration and the 
converged final (optimal) solutions are given in 
Figs 3-5. 

In a separate bifurcation study, critical 
pressures Per are determined as a function of 0 for 
the [+ 0/902/0110s composite laminate shells with 
the three end conditions described above. The 
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Fig. 2. Buckling opt imizat ion of [ + 0/902/0]m s composi te  
laminate shells without cutout  subjected to hydrostatic com- 
pression. (a) N u m b e r  of i terations N versus fiber or ientat ion 

0; (b) n u m b e r  of i terations N versus critical pressure Pc,, 

q 
Lowest buckling mode of the initial solution 
(iteration 1, 0 = 0 °) 

Lowest buckling mode of the optimal solution 
(iteration 11, O = 50.4 o) 

Fig. 3. Buckling modes  of [+-0/902/0]ms composi te  
laminate shells without cutout  subjected to hydrostatic com-  

pression (fixed ends). 

angles 0 corresponding to the maximum critical 
pressure (Fig. 6) are consistent with the present 
optimization solutions, i.e. 0 ~ 50.4 ° for the case 
with fixed ends, 0 = 47.5 ° with simply supported 

Lowest buckling mode of the initial solution 
(iteration !, 0 = 0% 

L o w e s t  buckling mode of the optimal solution 
(iteration 11, 0 = 47.5 o) 

Fig. 4. Buckling modes  of [+-0/902/0]u)s composi te  
laminate shells without cutout  subjected to hydrostatic com- 

pression (simply supported ends), 

Lowest buckling mode of the initial solution 
(iteration 1, 0 = 10 °) 

Lowest buckling mode of the optimal solution 
(iteration I t ,  6 = 90 °)  

Fig. 5. Buckling modes  of [+0/90_,/Oh0 s composi te  
laminate shells without cutout  subjected to hydrostat ic com- 

pression (free ends). 

ends and 0 ~ 90 ° with free ends. This demon- 
strates the accuracy and the validity of  the sequen- 
tial linear programming. 

From the numerical results it can be seen that 
critical buckling pressure Per for a cylindrical 



Buckling optimization of fiber-composite shells 7 

120 

100 

~,60 
e ~  . . . . . . .  Free ends 

40 . . . . .  . . _ . . . _ . . _ _ _ . . _ . . . _ - - - - - - -  . . . .  

2 0  I I . I . I . I r ' " * - I . 

0 10 20 30 40 50 60 70 80 90 
0 (degrees) 

Fig. 6. Critical pressure Per as a funct ion of 0 for [ + 0/902/ 
0]10s composi te  laminate  shells without cutout  subjected to 

hydrostat ic compression.  

composite shell is strongly influenced by fiber 
orientations as well as end conditions. Given 
optimal fiber orientations, the values of Per for 
[+ 0/902/0]ios composite shells with fixed ends 
and with simply supported ends are much greater 
than that for the same shell with free ends. 

3.2 Optimization of fiber orientations for 
composite shells with circular cutouts 

In the second example, the effect of fiber orienta- 
tions on the buckling resistance of a fiber com- 
posite laminate shell containing a cutout is 
studied. For comparison, composite shells with 
the same geometric, material, lamination 
variables, end and loading conditions as those 
studied in Section 3.1 are considered. Circular 
cutouts with d ffi 5-08 cm (2 in) are located at the 
center of the mid-spans of the composite shells 
(Fig. 1). With the above objectives in mind, the 
optimal fiber angles + 0 are determined to maxi- 
mize the critical buckling pressure p ,  of the com- 
posite laminate shells containing circular cutouts 
with different end conditions. 

The linearized optimization problem can be 
posited in exactly the same way as the first 
example given in Section 3.1. Again, the shells 
are modeled with eight-node isoparametric 
shell elements and analyzed with the ABAQUS 
program. 

Numerical results of the buckling optimization 
study of the composite laminate shells with 
cutouts are given in Fig. 7. The initial values of 0 
selected for optimization are 0* for the [ ° 0 / 9 0 2 /  

0]10s shells with fixed ends and with simply sup- 
ported ends, and 10" for the shell with free ends. 
The buckling pressure Per associated with each 
A0 in the iteration process is determined. The 
optimal value of 0 converges to 53.1" for the shell 

with fixed ends after nine iterations. (Although iter- 
ations 10 and 11 were carried out, their solutions 
were very close to the solution of iteration 9.) 
After 11 iterations, the optimal value of O con- 
verges to 51-4" for the shell with simply supported 
ends, and 90* for the shell with free ends. Buckl- 
ing modes of these shells associated with the first 
iteration and the final (optimal) solutions are 
shown in Figs 8-10. 

Again, in a separate bifurcation study, the criti- 
cal pressure Per is determined as a function of 0 
for the [+ O/902/0]10s composite laminate shells 
with circular cutouts and with different end condi- 
tions. The angles 0 corresponding to the maxi- 
mum critical pressure (Fig. 11) are consistent with 
the above numerical optimal solutions. These 
results demonstrate again the validity and 
accuracy of the sequential linear programming. 

From the numerical results obtained, one can 
see that the critical buckling pressure Per for the 
cylindrical composite shell with a circular cutout 
is strongly influenced by the end conditions as 
well as fiber orientations. Given the optimal fiber 
orientations, the values of Per for the [_+ 0/902/ 
0]10 s composite shells with fixed ends and with 
simply supported ends are much greater than that 
for the same shell with free ends. 
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2 3 4 5 6 7 8 9 l 0  
N 
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I00 ~ ~-- -- - --- -~ 

f: 80 Fixed ends 
60 ' Simply supported ends 

~' ' * Free P.ads e~ 

40 ~ . + : ; • 
. . . W . . . . . - 4 " "  

" l " I a I " I " I " I - I I I , i . 

2 3 4 5 6 7 8 9 10 1 
N 

(b) 
Fig. 7. Buckling opt imizat ion of  [ + 0/902/0]10s composi te  
laminate shells with circular cutouts  subjected to hydrostatic 
compression.  (a) N u m b e r  of iterations N versus fiber orienta- 
tion 0; (b) n u m b e r  of  i terations N versus critical pressure Pc,. 
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Comparing the solutions for optimal fiber 
angles ( __ O) of the shells containing cutouts with 
those for the previous examples in Section 3.1 (i.e. 
shells without cutouts), one can clearly see that 
they converge to different values for the cases 
with fixed ends (53.1 ° versus 50"4 ° in Fig. 12(a)) 

Lowest buckling mode of the initial solution 
(iteration 1, 0 = 0 °) 

and for the cases with simply supported ends 
(51.4 ° versus 47.5* in Fig. 13(a)). However, for the 
shells with free ends the optimal fiber angles con- 
verge to the same value (90 °) whether a cutout is 
present or not (Fig. 14(a)), Therefore, it can be 
concluded that the optimal fiber angle 0 is sensi- 
tive to the presence of cutouts in [+ 0/902/0]10s 
composite shells with fixed ends and with simply 
supported ends, but not for the composite shells 
with free ends. 

Finally, comparing the critical buckling 
pressures Per obtained for the examples in this 
section with those in Section 3.1, one can see that 
for the composite shells with fixed ends and with 
simply supported ends, the cases with a circular 
cutout experience appreciable reductions in the 

Fig. 8. 

D 
Lowest buckling mode of the optimal solution 
(iteration 9, 0 = 53.1 °) 

Buckling modes of [+0/902/0] . )  s composite 

Lowest buckling mode of the initial solution 
(iteration 1, 0 = 10 °) 

laminate shells with circular cutouts subjected to hydrostatic ~ .  
compression (fixed ends). 

;' 
Fig. 10. Buckling modes of t_+0/902/0]10s composite 
laminate shells with circular cutouts subjected to hydrostatic 

Lowest buckling mode of the initial solution compression(free ends). 

(iteration 1, 0 = 0 °) 

Lowest buckling mode of the optimal solution 
(iteration 11, 0 = 51.4 °) 

Fig. 9. Buckling modes of [_+ 0/902/0].~s composite 
laminate shells with circular cutouts subjected to hydrostatic 

compression (simply supported ends). 

120 

80 
v 

60 Simply supported ends 
~" . . . . . .  Free ends 

i J | t - i . i , i . s • I . i 

0 10 20 30 40 50 60 70 80 90 
0 (degrees) 

Fig. I I .  Critical pressure Per as a function of 0 for [ +__ O/ 
902/O]ins composite  laminate shells with circular cutouts sub- 

jected to hydrostatic compression. 
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(b) 
Fig. 12. Buckling optimization of [ + 0/902/0]t0s composite 
laminate shells subjected to hydrostatic compression (fixed 
ends). (a) Number  of iterations N versus fiber orientation 0; 

(b) number of iterations N versus critical pressure P~r. 
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(b) 
Buckling optimization of [ + 0/90:/0],~s composite 

laminate shells subjected to hydrostatic compression (free 
ends). (a) Number of iterations N versus fiber orientation 0; 

(b) number of  iterations N versus critical pressure Per- 
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1 

Fig. 1 3. Buckling optimization of [ :1: O[902/Oh.s composite 
laminate shells subjected to hydrostatic compression (simply 
supported ends). (a) Number  of  iterations N versus fiber 
orientation 0;, (b) number  of  iterations N versus critical 

pressure Pc,. 

critical pressure (Figs 12(b) and 13(b)). However, 
for the composite shell with free ends, the circular 
cutout has almost no influence on the buckling 
pressure (Fig. 14(b)). 

3.3 Optimization of cutout geometry for fiber 
composite shell 

We now consider a simply supported fiber- 
composite laminate shell with the same geometry, 
lamination layup, ply constitutive properties and 
loading condition as those studied in previous sec- 
tions. However, this shell contains an elliptic 
cutout, with radii a and b, at the center of the mid- 
span (Fig. 15). Based on the solutions obtained in 
Section 3.1, the optimal fiber orientations 
[+ 47"5/902/0hos are chosen in the present study. 
The objective here is to determine the optimal 
geometry (i.e. a and b) of the elliptic cutout so that 
the buckling pressure Pcr of the shell can be maxi- 
mized. 

A constraint condition that the curved surface 
area A* of the cutout is constant (say, 1/a of the 
total surface area A of the shell) is introduced for 
practical considerations. The surface area A* of 
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(b) 
Cylindrical composite laminate shell with elliptic 

c u t o u t .  

q 
In i t ia l  c u t o u t  s h a p e  

a -- 10.16 cm.  (4 .0  in.) and  b = 1.52 cm.  (0.6 in.) 

F ina l  o p t i m a l  c u t o u t  s h a p e  
a = 1.52 cm.  (0.6 in.)  a n d  b = 8 .69 era.  (3.42 in.) 

Fig. 17. Initial guess and final optimal configurations of the 
cutout in [_+47.5/90_,/0],~ s composite shells with simply 

supported ends subjected to hydrostatic compression. 

L. L 
r 

P 

P 

Laminate layup: 
[+--47.5/902/0] 10 S 

Composite shell geometry: 
L = 40.64 cm. (16 in.) 

D = 20.32 cm. (8 in.) 
t = 1.27 em. (0.5 in.) 

Cutout geometry (elliptic hole, radii a & b): 
A*/A = l/¢t 

Ply constitutive properties: 
E l l  = 138000 MPa 
E22 = 14500 MPa 
GI2 = GI3 = 5870 MPa 
G23 = 3520 MPa 
v12 -- 0.21 

Loading: 
p' = 3.75 p 

Fig. 16. Buckling optimization of [+47"5/902/0].~s com- 
posite laminate shells with elliptic cutouts subjected to 
hydrostatic compression (simply supported ends). (a) 
Number of iterations N versus radii a and b; (b) number of 

i t e r a t i o n s  N v e r s u s  c r i t i c a l  p r e s s u r e  P e r  

the cutout can be shown (Ref.  21 )  as 

A *  = 2D sin- l 1 - dz 
) 

(5) 

This constraint condition can be rewritten as 
A*=A/a, or 

2DIt"sin-~[22-~(1-Z~a2)]dz=zrDL/a (6) 

In this study, a is selected as 50 for illustrative 
purposes. The  constraint reduces the number  of  
independent geometric parameters from two to 
one. The  constraint equation can be solved 
numerically, and an explicit relationship between 
a and b is given in Ref. 21. 

In the sequential linear programming analysis, 
for each iteration the linearized optimization 
problem becomes 

Maximize :  

Subject  to: 

~ P c r  Pcr(a)=p"(a")+(a-a")--~-a J, .... 

(7a) 

O<a<L/2 (7b) 

O<_b<D/2 (7c) 

I(a - atl)l < r x q × 0.5  ~ (7d)  
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Firs t  buckl ing  mode  for shell with in i t ia l ly  e l l ip t ic  cutout  
a = 10.16 era. (4.0 in.), b = 1.52 era. (0.6 in.), Per = 22.0 MPa 

11 

Fig. 18. 

Firs t  bucHing  mode  for shell with optimal elliptic cutout 
a = 1.52 cm. (0.6 in.), h = 8.69 cm. (3.42 in.), Pcr = 106.3 MPa 

Buckling modes of [+47"5/902/0]m0s composite laminate shell containing elliptic cutout with initial and optimal 
configurations (simply supported ends, subjected to hydrostatic compression). 

where a 0 is the current solution. The size r and the 
reduction rate q of the move limit are selected to 
be 2"29 cm (0"9 in) and 0.8 IN- i), respectively. 

The derivative Opcr/Oa in eqn (7a) can be 
evaluated in the same manner as that in eqn (4), 
with 0 being replaced by a. To calculate OpJOa, 
incremental analyses are needed to compute 
pcr(a0) and per(ao +Aa) in each iteration. In the 
present study, the value of Aa is selected to be 
0-13 cm (0.05 in) in most iterations. 

Some of the key results obtained in the optimi- 
zation study are given in Fig. 16. The initial guess 
introduced is a =  10.16 cm (4.0 in) and b= 1.52 
cm (0.6 in). The final solution converges to 
a = 1.52 cm (0.6 in) and b - 8-69 cm (3.42 in). The 
initial guess and the final optimal configuration of 
the cutout are shown in Fig. 17. The first buckling 
modes of the shells with initial and final (optimal) 
cutout geometry are shown in Fig. 18. 

From Fig. 16, it can be seen that when the 
major radius of the elliptic cutout is normal to the 
hoop direction, i.e. a > b, the buckling resistance 
of the composite shell tends to be low. The longer 
a is, the lower Pcr becomes. On the other hand, 
when the major radius of the elliptic cutout is 
parallel to the hoop direction, i.e. a < b, the 
buckling resistance of the composite shell tends to 
be high. The longer b is, the higher Pcr becomes. 

The buckling pressure for the case of an elliptic 
cutout with its major axis parallel to the hoop 
direction (i.e. the final optimal configuration) is 
4"8 times higher than that with the cutout in an 
orthogonal position (i.e. the initial guess con- 
figuration). These results are not unexpected, as 
the ratio of the hoop stress to axial stress is 2/1 for 
a cylindrical shell under hydrostatic loading 
without the cutout. The major radius of the elliptic 
cutout tends to be parallel to the hoop direction 
(i.e. the high stress direction) to achieve the maxi- 
mum buckling resistance. Although the optimal 
solution for b is 8"69 cm (3.42 in), not equal to the 
shell radius 9.53 cm (3.75 in), it is close to this 
extreme case. 

When the buckling mode of the composite shell 
containing a cutout with the initially assumed con- 
figuration is compared with that of the composite 
shell with the final (optimal) cutout geometry (Fig. 
18), it can be clearly seen that buckling mode 
shape in the former case is local around the 
cutout. However, in the latter case, mode shape is 
global for the entire composite structure. There- 
fore, for the simply supported fiber composite 
laminate shell with an elliptic cutout, we conclude 
that when the radius a is much greater than the 
radius b, the governing buckling mode is local 
whereas in the case of the radius b being much 
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greater than the radius a, the governing buckling 
mode is global. ACKNOWLEDGEMENTS 

4 CONCLUSIONS 

From the results obtained in this study, the follow- 
ing conclusions can be drawn: 

( 1 ) Given a structural geometry, loading condi- 
tion and material system, the buckling 
resistance of a cylindrical composite shell is 
strongly influenced by fiber orientations, 
end conditions and the presence of a 
circular cutout. 

(2) For the [+0/902/0]10s composite shell 
systems with fixed ends and with simply 
supported ends, the optimal fiber angle 0 
for maximum buckling resistance under 
external hydrostatic compression is sensi- 
tive to the presence of a circular cutout, but 
is not for shells with free ends. 

(3) For the [+0/902/0]10s composite shells 
with fixed ends and with simply supported 
ends under external hydrostatic com- 
pression, appreciable reductions in the 
critical pressure are experienced in the 
cases with a circular cutout. However, for 
the same composite shells with free ends, 
the circular cutout has almost no influence 
on the buckling pressure. 

(4) Given the optimal fiber orientations in a 
composite laminate shell containing an 
elliptic cutout of a constant area, the 
buckling resistance of the shell is governed 
by the geometry of the cutout. For example, 
in a simply supported, cylindrical com- 
posite shell with a [+ 47"5/902/0]10s layup, 
the optimal configuration of the elliptic 
cutout is found to have its major axis 
parallel to the hoop direction. The buckling 
pressure for the case of an elliptic cutout 
with its major axis parallel to the hoop 
direction is 4-8 times higher than that with 
the cutout in an orthogonal position. 

(5) For a simply supported [+47"5/902/0],~s 
cylindrical composite shell, when the major 
axis of the elliptic cutout is along the axial 
direction with its radius much greater than 
that along the hoop direction, the govern- 
ing buckling mode is local. However, when 
the major axis of the elliptic cutout is along 
the hoop direction with its radius much 
greater than that along the axial direction, 
the governing buckling mode is global. 
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