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Abstract-Plane stress constitutive models are proposed for the nonlinear finite element analysis of 
reinforced concrete structures under monotonic loading. An elastic strain hardening plastic stress-strain 
relationship with a nonassociated flow rule is used to model concrete in the compression dominating region 
and an elastic brittle fracture behavior is assumed for concrete in the tension dominating area. After 
cracking takes place, the smeared cracked approach together with the rotating crack concept is employed. 
The steel is modeled by an idealized bilinear curve identical in tension and compressions. Via a layered 
approach, these material models are further extended to model the flexural behavior of reinforced concrete 
plates and shells. These material models have been tested against experimental data and good agreement 
has been obtained. 
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NOTATION 

rotating crack tangent constitutive 
matrix for concrete 
elastic, plastic and elastic- 
plastic material matrices 
constitutive matrix of the ith steel 
layer in material coordinates 
constitutive matrix of cracked con- 
crete in crack coordinates 
constitutive matrix for transverse 
shear 
inplane constitutive matrixes for 
individual steel layer and individ- 
ual concrete layer 
8 by 8 constitutive matrix for stress 
resultants 
initial modulus and tangent modu- 
lus for concrete 
elastic modulus and plastic modu- 
lus of steel 
loading functions 
matrix that reflects the possible 
changes in the crack direction 
shear moduli of untracked and 
cracked concrete 
vectors of stress resultants 
transformation matrix 
yield function and plastic potential 
function 
compressive stress and tensile stress 
of concrete 
maximum compressive strength 
and maximum tensile strength of 
concrete 
degraded maximum compressive 
stress of concrete 
current stress and yield stress for 
ith steel layer 
global coordinates 
material coordinates or crack coor- 
dinates 

distance from the middle surface to 
the top, middle and bottom of the 
jth layer 
correction factor for shear 
strain vector in global coordi- 
nates 
vector of middle surface strain 
maximum strain and correspond- 
ing stress on the uniaxial 
stress-strain curve 
strain corresponding to f: in a uni- 
axial compression test 
tensile strain of concrete 
strain corresponding to f: on the 
equivalent uniaxial stress-strain 
CUNe 
angle measured counterclockwise 
in degrees from strong reinforce- 
ment direction to crack direction 
angle between the ith steel axis and 
the global x-axis 
vector of transverse shear strain 
vector of curvature 
rotational angle between the global 
coordinates and the crack coordi- 
nates 
angle between the ith steel axis and 
the direction normal to crack 
shear retention factor 
Poisson’s ratio of concrete 
steel percentage for ith steel layer 
stress vector in global coordinates 
equivalent stress and equivalent 
strain 
mean stress and octahedral shear 
stress 
stresses of concrete in crack coordi- 
nates 
maximum and minimum principal 
stresses 
row vector, column vector and 
matrix 
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1. INTRODUCITON 

Structural design of reinforced concrete plates 
and shells is usually based either on forces deter- 
mined using a linear elastic analysis or by selecting 
a mechanism using yield line theory. Concrete 
plasticity, cracking, tension stiffening, and other 
nonlinear material behaviors are commonly 
ignored during the elastic analysis or grossly approxi- 
mated in the yield line approach. Today, with 
the help of the computer, it is possible to carry out 
a finite element analysis, rationally simulating 
such nonlinear behavior. However, the success of 
such an analysis depends on a thorough under- 
standing and modeling of the composite material 
behavior. 

For plates and shells, the stress state at any 
location can be approximated as being in a state of 
plane stress. In previous papers by the present 
authors [ 1,2], the constitutive equations of reinforc- 
ing steel, plain concrete and cracked reinforced con- 
crete under such plane stress conditions have been 
developed and tested against the data reported from 
several experimental studies. The consequence of 
these comparisons shows good correlation between 
the experimental and comparable computed quan- 
tities. In this paper, those constitutive models are 
briefly summarized (detailed discussion of those 
models can be obtained in [l] and [2]). Then, through 
a layered approach, they are further extended 
to model flexural behavior or combined mem- 
braneflexural behavior of reinforced concrete plate 
and shell structures. 

In the layered approach, the concrete section is 
divided up through the thickness into a number of 
layers. Each layer is assumed to be in a state of 
plane stress. The proposed material models are then 
applied to each layer individually. In order to demon- 
strate the capability and generality of the proposed 
material models in flexural as well as combined 
membrane- flexural applications, a series of numeri- 
cal examples is presented and compared with exper- 
imental results. 

Fig. 1. Equivalent steel layer and material coordinates _ . 

The use of a plasticity model to describe the 
behavior of concrete is recognized as an approxi- 

for steel. mation of convenience. It is realized that concrete is 

Fig. 2. Idealized stress-strain curve for steel. 

2. CONSTITUTTYE MATRIX FOR 
REINFORCING STEEL 

Reinforcing steel is treated as an equivalent 
uniaxial layered material placed at the depth of the 
centerline of the bars and smeared out horizontally 
over the region of bar effect (Fig. 1). As many layers 
are used as there are layers of bars in the cross 
section, each with its uniaxial properties oriented 
along the axis of the bars. The stress-strain curve of 
reinforcing steel is modeled by an idealized bilinear 
curve identical in tension and compression (Fig. 2). 
The dowel action of the reinforcing steel is neglected 
and the bond between steel and concrete is assumed 
to remain perfect. The incremental constitutive 
matrix for the ith steel layer, [CISi, in the material 
coordinates (x’, y’), as shown in Fig. I, can be written 
as 

(1) 

where pi and E, are the steel percentage and the 
modulus of elasticity of the reinforcement in the ith 
layer. When yielding of steel occurs, the incremental 
constitutive matrix reverts to 

0 

0 

0 0, 

1 

(2) 
0 0 

where E, is the plastic modulus for steel. 

3. YIELD FUNCTIONS AND HARDENING RULE 
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not a real elastic-plastic material but introducing 
softening through plasticity provides a mathemat- 
ically defined description of that softening that is 
in reasonable agreement with experimental data. 
For plate and shell type structures in particular, 
the more critical items are the amount and placement 
of the steel. Precision in the definition of the softening 
on the compression side is not critical in most 
cases. The fact that there is softening must be ac- 
knowledged but what precise rules govern that soft- 
ening is not critical. A simple mathematically well 
defined set is most logical and that translates to a 
plasticity theory. 

In this investigation, the theory of plasticity is 
employed to describe the strain hardening behavior 
of plain concrete. The initial and subsequent yield 
surface assumed for the concrete (Fig. 3) can be 
defined by the same yield function expressed in the 
following form [ 11: 

f({@J,e)=F({e))-- =O, (3) 

where {a} = (ox, b,,, T,} is a stress vector. The func- 
tion F can be looked upon as a loading function and 
u is a hardening parameter called the ‘equivalent 
stress’. 

For biaxial tension, the type of concrete failure 
is cracking. It is assumed that the initial yield 
surface coincides with the failure surface (Fig. 3). 
Under this assumption, concrete behaves in a 
purely linear elastic fashion up to failure with 
no plastic deformation having occurred. The 
failure surface for biaxial tension is defined 
as 

j-=c zI+ar 
( 

31-a 

2$ a 
BC, + - ,_*+j-:=o, (4) 

where f: is the maximum compressive strength 
of concrete. a,,, and t,, are the mean and octa- 
hedral shear stresses, respectively. For plane stress 
conditions, these have the following forms: 

- 

To,,=$7:- axav + u; + 32&)“2. 

In eqn (4), a =fi/fiz0.09, where f; is the maxi- 
mum tensile strength of concrete. The variable c is 
determined by the following equation: 

c = 1 - 0.4019(0,/a,) + 0.008913(02/a,)2, 

where 6, and g2 are principal stresses with 
612 02. 

When concrete is subjected to a combined ten- 
sion-compression stress state, the yield function is 
defined as 

where for - co < 0, /u2 < - 0.103 

c = 1 - O.O2886(a,/a,) - 0.006657(a,/o,)* 

- O.O002443(a,/~r,)~, 

while for -0.103 < 6, /a, < 0 

c = 1 + 6.339(a, /a2) + 68.82(a, /a2)* + 183.8(a&~,)~. 

Yield Surfaces 

Fig. 3. Yield surface of concrete in the two dimensional principal stress plane. 
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is relatively large while crushing failure takes place 
under high compression-low tension stress states. 
In order to separate these two failure modes, the 
principal stress ratio 0, /a, of l/ - 15 reported by 
Kupfer et al. [3] is used. Thus, when - co < a, /az < 
-l/15 and a =f:, cracking will occur; and when 
- l/ 15 < 6, /a, < 0 and u =f:, concrete will enter the 
descending portion of its stress-strain curve which 
then leads to the crushing condition. 

For biaxial compression, the type of concrete 
failure is crushing and the yield function is defined 
as 

8-l $2$&,+3~.” --Q =O, (6) 

where /l = 1.16 and 

c = 1 + O.O5848(a,/a,) - 0.05848(a,/~,)~. 

The hardening rule defines the motion of the 
subsequent yield surfaces during plastic loading. In 
this study, an isotropic hardening is used. This 
assumed that the yield surface expands uniformly 

in which 

without distortion as plastic deformation occurs, 
as shown schematically in Fig. 4. It is known 
that the Bauschinger effect cannot be modeled 
with an isotropic hardening rule. However, under 
monotonic loading conditions, the Bauschinger 
effect is not crucial because no reverse loading 
takes place. As a consequence, an isotropic harden- 
ing rule is adequate in modeling the hardening 
behavior of concrete under monotonic loading con- 
ditions. 

4. EQUIVALENT UNIAXIAL STRESSSTRAIN CURVE 

When plastic deformation does occur, there should 
be a certain parameter to guide the expansion of the 
yield surface. A commonly used approach is to relate 
the multidimensional stress and strain conditions to 
a pair of quantities, namely, the equivalent stress tr 
and equivalent strain L, such that results obtained 
following different loading paths can all be correlated 
by means of an equivalent uniaxial stress-strain 
curve. 

The equivalent uniaxial stress-strain curve used in 
this study has the following form [l, 41: 

0 
U= 

l+~R+R,-2)(~)-(2R-l)(~~+R(~) 
(7) 

In eqn (7) c,, = qco is the strain corresponding to f: on the equivalent uniaxial stress-strain curve (Fig. 5) 
while co is the strain corresponding to f: as observed in a uniaxial compression test. EC is the initial modulus 
of elasticity. E, and cf are the maximum strain and the corresponding stress on the equivalent uniaxial 
stress-strain curve. 

The value of the variable q can be determined as follows (with Q, 2 a2). 

(1) In a combined tension-compression region, for -cc < al/a2 < -0.103 

[O.O01231(a,/a,) + 0.001469(o,/a,)2 + 0.00001340(a2/o,)3] 

for -0.103 < cl/a2 < 0 

[ 1 + 13.96(a, /a2) + 59.21(a, /a2)2 + 69.24(a, /a2)3]. 

(2) In a biaxial compression region 

[ 1 + 1.782(0, /a2) + 0.5936(a, /a2)2]. 

For the values of cr and tl, Darwin and Pecknold [5] used R, = 5, R, = 4; Elwi and Murray [6] and Chen [7] 
used R, = 4, R, = 4. Generally, to define a, and E, on any rigorous experimental basis is impossible, because 
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the descending branch of the stress-strain curve is highly test dependent and is usually unavailable from 
statically determinate tests. In this study, it is assumed that R,, = 4 and R, = 4. 

The equivalent uniaxial tangent modulus E, can be calculated by differentiating eqn (7) with respect to the 
equivalent strain L. The result has the following form: 

Beyond the peak stress point in the strain softening 
region, with further straining, the compressive stress 
begins to decrease and the equivalent uniaxial tangent 
modulus becomes negative. In order to prevent the 
numerical difficulties associated with a negative tan- 
gent modulus, once the ultimate stress ff has been 
reached, E, is set to zero and concrete then behaves 
like a perfectly plastic material. The accumulated 
unbalanced stresses are released in a stepwise fashion 
with the corresponding yield surface being contracted 
simultaneously. 

5. CONSTITUTIVE EQUATIONS FOR PLASTIC 
CONCRETE 

Once the yield functions have been defined, the 
hardening rule has been selected, and the equivalent 
uniaxial stress-strain curve has been chosen, the 
incremental plastic stress-strain relations can then be 
written as follows [l, 81: 

d(g)‘= [Cl,d{~Y= ([Cl, - [Cl,) dGY (9) 

lv 0 

Icle=+J v 1 I I ,,& (10) 

ag af 
Kl, = 

[Cl, ao’a(b) [Cl, 
44 G af ag ’ ___- - ~ 

(4 - 4) = +aiuj [clea{cr)’ 

(11) 

“2 
A 

Yield Surface 

Fig. 4. Isotropic hardening rule. 

where v is Poisson’s ratio for concrete and 

g({bj, 0) = G({b j) -d = 0 is a plastic potential 
function. In this study, a nonassociated flow rule is 
used and the von Mises yield function is chosen as the 
plastic potential function. It has the following form: 

There are several things worth noting in eqns (9) 
and (11). First, due to the use of the nonassociated 
flow rule (i.e. g #f), [Cl, is unsymmetrical, and 
in order to carry out a finite element solution an 
unsymmetrical equation solver is needed. Second, 
under the condition that E, = 0, no matter how much 
the load is increased, the yield surface does not 
expand. Equation (9) then becomes the incremental 
stress-strain relationship for an elastic-perfectly 
plastic material and [Cl, is singular. 

6. SINGLY CRACKED CONCRETE 

In this study, a smeared crack model [9] is adopted. 
With this model the initiation of a cracking process 
at any location happens when the concrete stress 
reaches one of the failure surfaces either in the biaxial 
tension region or in a combined tension+ompression 
region with ---co < ~,/a~ < -l/15. In the biaxial 
tension region, this surface has already been defined 
by eqn (4). In the combined tension+ompression 
region the failure surface is defined by substitutingfi 
for u in eqn (5). 

With the smeared crack representation, concrete is 
treated as an orthotropic material with principal axes 
normal and parallel to the crack direction (Fig. 6). 

Strain 
Softening 

* 

Assumed Perfectly i 

- E* 
c 

-E f E 
Fig. 5. Equivalent uniaxial stress-strain curve for concrete. 
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Fig. 6. Crack coordinates. 

The incremental stress-strain relationships associated 
with the crack coordinates then become 

00 0 

[Cl = 0 E, 0 

i 1 

1 (13) 

0 0 PG, 
where E, is the tangent modulus of concrete parallel 
to the crack direction (choice of values discussed 
later), p is the shear retention factor presented to 
provide for shear friction across the crack, and 
G, = EC/2 is the shear modulus for cracked concrete 
(the Poisson’s ratio v is taken as zero due to the lack 
of interaction between the two orthogonal direc- 
tions). Various forms of this shear factor have been 
proposed [lo]. However, numerous analytical results 
have demonstrated that the particular value chosen 
for p (between 0 and 1) does not appear to be 
critical, but values greater than zero are necessary 
to prevent numerical instabilities [lo, 111. Conse- 
quently, a constant value of p = 0.25 is used in this 
investigation. 

7. TENSION STIFFENING 

The use of an orthotropic constitutive relation, 
such as eqn (13), to describe cracked concrete does 
not represent the entire region that contributes to the 
definition of the stiffness. Intact concrete in the region 
also contributes. This, plus the fact that cracked 
concrete of a reinforced concrete element can still 
carry some tensile stress in the direction normal to the 
crack, constitutes a phenomenon termed tension 
stiffening. In this study, a general tension stiffening 
curve suggested by Bhide [12] is used. This curve is 
given as follows: 

fi 
fi = 1 + lOOOt,(l~ l/90)‘,’ ’ 

(14) 

wheref, and L, are the average tensile stress and the 
average tensile strain normal to the crack direction. 
4 is measured in degrees counterclockwise from the 
steel direction to the crack direction. In the case of 
unequal reinforcement in two orthogonal directions, 
the axis of the stronger reinforcement is taken as 
the reference direction. Equation (14) is plotted for 
various values of $J in Fig. 7. 

0.6 

0.4 

0.2 

0.0 1 I I I I 

0 2 4 6 8 10 

Strain x 1000 

Fig. 7. Tension stiffening curves. 

In situations where the reinforcing steel yields, the 
strain levels are sufficiently high that the average 
tensile stress of cracked concrete must be close to 
zero. Therefore, the tension stiffening effect should 
not artificially increase the total stress in the direction 
of any yielded reinforcement, otherwise an overesti- 
mation of the ultimate capacity may be expected. If 
there are L layers of steel existing at a concrete 
section, then a generalized upper bound for the 
concrete tension stiffening stress can be written as 
follows: 

in whichf,, and fyi are current stress (in tension) and 
yield stress, respectively, for the ith steel layer. Bi is 
measured counterclockwise from the ith steel axis to 
the direction formal to the crack. 

8. STRESS DEGRADING EFFECT FOR CONCRETE 
PARALLEL TO CRACK DIRECTION 

After cracking has taken place, the concrete paral- 
lel to the crack direction is still capable of resisting 
either tensile or compressive forces. When it is sub- 
jected to tension, a pure linear elastic behavior is 
assumed (Fig. 8) and E, is taken as EC in eqn (13). On 
the other hand, when it is subjected to compres- 
sion, experimental results [13] show that the tensile 
cracks have caused damage to the concrete with the 
transverse tensile strain having a degrading effect 
not only on the compressive strength but also on the 

fc A 

-fcm 

-0 
f 
-p!-J 
1 
! -E -E E 

tit 
0 f 

Fig. 8. Stress-strain curve for concrete parallel to the crack 
direction. 
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1.2 I , I I I I I 9. DOUBLY CRACKED CONCRETE 

Upon further loading of single cracked concrete, a 
second set of cracks can form in the direction normal 
to the first set of smeared cracks. Therefore, in that 
direction, if the concrete stress is less than f ;, then 
concrete remains singly cracked. Otherwise, if it is 

0.4 - greater than f ;, then the second set of cracks forms. 

0.2 - 
The constitutive matrix for doubly cracked concrete 
is written as 

0.0 I I I I I I I 

0 1 2 3 4 5 6 7 8 00 0 
Et/E0 

[Cl= 0 0 0 

[ 1 , w 

Fig. 9. Degraded maximum compressive strength for 0 0 PC, 
cracked concrete. 

while the tension stiffening stresses normal to 

compressive stiffness. Therefore, concrete in this 
both crack directions can be calculated by using 

situation is softer and has weaker values than those 
eqn (14). 

recorded from a standard cylinder test. In this inves- 
tigation, the experimentally determined relationship 

10. CONSTlTUTIVE MATRIX FOR CRACKED 
CONCRETE 

suggested by Vecchio and Collins [14] is used (Fig. 9). 
That relation is In most conventional finite element analysis of 

reinforced concrete structures, crack directions are 

f 1 

f = 0.8 +0.3&,/E, G l.O. 
(16) 

assumed fixed once they form and while they remain 
open. This conception is termed the ‘fixed crack 
model’ [lo]. However, this model leads to crack direc- 

After the peak strength f, is determined, a 
tions which may be inconsistent with the limit 

stress-strain curve similar to eqn (7) is employed to 
state [15]. The change in the crack direction and the 

calculate the concrete compressive stress f,. We have 
consequential change in the direction of the 

(Fig. 8) 

in which 

R Jwo-1) 1 
(R,-1)2 -R, 

R,$ R,=f- R, ~2 
60 

&. 
o cr 60 

Again it is assumed that R, = 4 and R, = 4. The tangent modulus, E,, used in eqn (13) can then be calculated 
by differentiating eqn (17) 

It should be noted that due to this degrading 
of the maximum compressive strength, the tan- 
gent modulus is also reduced simultaneously. In 
order to prevent any numerical difficulty associ- 
ated with negative tangent moduli, once the peak 
stress f, has been reached, E, is set to zero and 
the unbalanced stresses are released in a stepwise 
fashion. 

maximum stiffness is clearly observed in the exper- 
imental work of Vecchio and Collins [ 131. Therefore, 
a ‘rotating crack model’ [I 1, 15, 161 is employed in 
this study to include this behavior. 

The basic assumption for the rotating crack 
approach is that after cracking takes place, the crack 
direction is always perpendicular to the direction of 
the major principal strain axis during the course of 
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loading. As a result, the rotating crack tangent 
constitutive matrix [Cl, is the sum of the conventional 
tangent constitutive matrix for cracked concrete, plus 
a contribution which represents the effect of the 
possible changes in crack direction. This can be 
written as follows: 

[Cl, = U-V’)lr[~‘l[~(~)l + PI, (20) 

where [G] matrix reflects the possible changes in 
the crack direction and - 

C. SCHNOBRICH 

affect the inplane biaxial behavior of concrete. For 
each layer this approach is independent of the specific 
type of material properties present. Therefore, in the 
compression controlled region, the concrete layers 
might be in elastic, strain hardening and strain soften- 
ing states while in the tension dominated area, the 
concrete layers could be in elastic, singly cracked and 
doubly cracked situations. The advantage of using 
this layered model is the generality of allowing for 
material property variation through the thickness of 
the section while not suffering the consequence of 

cos* e sin* tl sin 6 cos 19 

MO = sin* e cos2 e -sinBcos6 1 (21) 
-2sint?cost3 2sinecos8 cos*e-sin*@ 

is a transformation matrix in which tl is measured counterclockwise from global x-axis to crack x’-axis 
(Fig. 6). 

This [G] matrix in eqn (20) has been derived in detail in [l l] and [15]. It has the following form: 

[Gl = (e: - QCOS* 28 
sin* 28 -sin2 28 -sin 28 cos 28 

2(6X - C.” ) 
-sin* 28 sin* 28 sin 28 cos 28 1 . (22) -sin 28 cos 28 sin 28 cos 28 COS* 28 

For singly cracked concrete, [C’] in eqn (20) can 
be calculated by eqn (13). 0.: and 06 in eqn (22) are 
the tension stiffening stress normal to the crack 
direction and the concrete stress parallel to the crack 
direction, respectively. For doubly cracked concrete, 
[C’] in eqn (20) can be calculated by eqn (19). a: and 
a; in eqn (22) are the tension stiffening stresses 
normal to the first crack and the second crack 
directions. 

II. LAYERED MODEL 

In the nonlinear finite element analysis of 
reinforced concrete structures, the element can be 
divided into a number of concrete layers through the 
thickness while the steel reinforcement is smeared 
into equivalent steel layers[ll, 171 (Fig. 10). In this 
approach each concrete layer is assumed to be in a 
state of plane stress and the actual stress distribution 
of the concrete section is modeled by a piecewise 
constant approximation (Fig. 11). In addition, it is 
also assumed that the transverse shear stresses do not 

Assume ’ {co 1 = {G,, cyol i’x.,,o I are the strains at 
the middle surface of the section and {K} = 
{K.. , K,., ICKY} are the curvatures. The strains at the 
mid-depth of the jth layer can be calculated as 
follows: 

{cY= {%}‘+z,{~}‘> (24) 

where z, is the distance between the center of the jth 

layer and the middle surface of the section. Let z,, and 

steY 
Layers 

Fig. 10. Layered model. 

going to a complete three dimensional finite element 
analysis. 

Let the concrete section be divided into K layers. 
The general stress-strain relatins for the jth layer 
are 

{aIT= [Cl,{~Y. (23) 

Middle Surface 

Concrete Layers Stress Distribution 

Fig. 11. Stress profile for concrete section. 
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zjs be the distance from the middle surface of the section to the top and bottom of thejth layer, respectively. 
Then, the stress resultants for the jth layer are 

(N)r= (2, -Z#)fb)l” fM)‘= Zj(Zjf -Zj&)(O)*~ (25) 

where {A’) = (iV,,N,,,N,,), {M) = {M,,M,, MXY}. Substituting eqns (23) and (24) into eqn (25), the 
contribution of the jth layer to the various stress resultants can be expressed in the following form: 

tzjt - zjb)[Clj zj(zjt - zjb)[clj 
zj(zj~-zjb)[clj z~tzj~-zjb)[Clj 

(26) 

Summing the stiffness cont~butions of each layer together, the stiffness matrix for the concrete section can 
be expressed as 

The [Cl, matrix used in eqn (27) may be [Cl, of 
eqn (10) if thejth concrete layer is elastic, or may be 
[Cl, of eqn (9) if the jth concrete layer is plastic, or 
may be [C], of eqn (20) if the jth concrete layer is 
cracked. 

In the layered approach, the steel reinforcement 
is smeared into equivalent layers of steel having 
uniaxial properties and the stress distribution of 
reinforcement is considered to be discrete in the 
section (Fig. 12). ‘Similar to concrete, the stiffness 
matrix for reinforcing steel (assumed L layers in total) 
can be written as 

where zi is the distance between the mid-depth of 
the ith steel layer and the middle surface of the 
section. Cpi is the direction angle of the ith reinforce- 
ment (Fig. 1). the [Cl, matrix used in eqn (29) may 
be either that of eqn (1) or that of eqn (2), depending 
on whether the state of the ith steel layer is elastic or 
plastic. 

In the layered stiffness formulation, the steel 
reinforcement is assumed to be unaffected by any 
transverse shear stresses. The transverse shear stresses 
are all applied to the concrete section and would not 
affect the inplane and the flexural behavior of the 
concrete layers. Furthermore, these transverse shear 

m-th Layer 

E 2 
m ~I~ 1 1 t 

Middle 
Surface 

Steel Layers Stress Distribution 

Fig. 12. Stress profile for steel reinforcement. 

stresses are assumed to always remain elastic and are 
not included in the yielding or cracking processes. 
The matrix relation between transverse shear stresses 
and transverse shear strains becomes 

where G is the shear modulus of concrete and c[’ is a 
correction factor for shear to account for the shape 
of the cross section and is usually taken as 1.2. 

The shear forces can be obtained by integrating 
the shear stresses through the thickness and the 
relationship between the transverse shear forces 
{Q} = {Q,, Q,,} and the transverse shear strains 
(y,} = (yl=, y,,} can be expressed as follows: 

{Pi”= WlIr,Y. (31) 

For the reinforced concrete section, the final 
form of the stress resultant constitutive matrix at an 
integration point can be written as 

where [D] can be established by assembling the 
contributions of all the concrete layers via eqn (27), 
those of all the steel layers via eqn (28), and that for 
the transverse shear stiffness via eqn (31). 

It should be noted that in the reinforced concrete 
section, there are different stress states existing in the 
different layers. Some concrete layers may crack in 
tension while others may yield in compression. Steel 
layers may yield in tension or compression. Gener- 
ally, the stress resultant constitutive matrix is no 
longer symmetric with respect to the middle surface 
and the extensional and flexural terms are coupled. 

For the finite element analysis, one of the import- 
ant decisions to be made is to determine the adopted 
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Support )_ --II Points 

Pl 

p2 Not for 
’ 3 uniaxial 

p4 moment 

specimens 

114” diameter reinforcing bars 
Cover to top reinforcement 3/S” 

Cover to bottom reinforcement 3/S” + A 

Dimensions of test specimens Cross section 

Fig. 13. Cardenas-Sozen specimens. 

number of concrete layers which represents the cross 
section of the structures. In [l l] and [lS], it has been 
shown that the results and costs of analyses are not 
sensitive to the number of concrete layers. Therefore, 
a total of 10 concrete layers is used in the following 
examples. 

‘12. NUMERICAL EXAMPLES 

I2. I . Sabs in ~~~~~~~ _f&xural fovce $eids 

To evaluate the ability of the proposed defi- 
nitions of material response in modeling the flexural 

behavior of reinforced concrete structures, the best 
starting point is to test them against structures that 
are subjected to uniform flexural forces. For this 
purpose, the experimental work of Cardenas and 
Sozen [ 191 is chosen. 

The dimensions of the reinforced concrete slabs 
and the details of the slabs’ cross section are shown 
in Fig. 13. In this set of examples, nine specimens with 
varying o~entations of reinfor~ment and varying 
steel percentages are studied. Among them stabs B?, 
Bt 1 and B12 are subjected to uniaxial moment, slabs 
B I 5, B 16 and B 17 are subjected to pure torsion, while 

Ml~i/f\( ~~,~ 
1 T 

Uniaxial moment Pure torsion 

T ~I~~, 2 

t T 

Combined bending and torsion 

Fig. 14. Loading pattern and finite element 

u=w=o 

u=v 
‘t ‘t, j; 

X ! 
----Tr- =w=o w=o 

Finite element idealization 

idealization for Cardenas-Sozen specimens. 

Table 1. Mate~al properties for Garden-Sozen specimens 

Thickness Concrete Reinforcement Loads 

t A f, #, and (P4 cbZ and Ip3 Ratio of 

Siab (in.) (in.) (ki) (ksi) pI and p4 p2 and P, @xX WeUt TIM 

B7 4.14 0.14 5150 50.0 0.00790 0.00862 135.0 45.0 0 
Bll 4.12 0.12 4800 50.0 0.00794 0.00433 157.5 67.5 0 
B12 4.12 0.12 5170 47.6 0.00794 0.00433 67.5 157.5 0 
B15 4.09 0.09 5260 47.9 0.00800 0.00873 135.0 45.0 co 
B16 4.04 0.04 4730 48.3 0.00810 0.00884 90.0 0.0 co 
B17 4.03 0.03 5530 50.8 0.09812 0.00886 157.5 67.5 
B27 4.06 0.06 53.50 45.2 0.~806 0.00879 135.0 45.0 0% 
B28 4.08 0.08 5620 47.6 0.00802 0.00875 157.5 47.5 0.45 
B33 4.07 0.07 4930 45.9 0.00804 0.00219 0.0 90.0 0.45 

TMeasured counterclockwise from x-axis. 
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4. 
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Principal curvature x 1000 (I/in) 

Fig. 15. Moment-curvature plot for Cardenas-Sozen specimens. 

Table 2. Experimental and numerical results for Cardenas-Sozen specimens 

Experimental Predicted 
M, 1% 

(k-in.&.) 
MY M” 

Slab (k&/in.) (d:g.) (k-in&.) (k-in./~n,) (d:.) 

B7 5.60 5.85 90 5.32 5.79 90 
Bll 4.50 5.35 109 4.59 5.01 107 
B12 2.80 3.82 80 2.94 3.27 84 
B15 5.20 5.33 135 4.87 5.39 135 
B16 5.43 5.43 135 4.93 4.93 135 
B17 5.50 5.88 135 5.31 5.54 127 
B27 5.00 5.70 111 5.10 5.84 109 
B28 5.40 5.90 113 5.86 6.17 110 
B33 4.18 4.60 137 4.12 4.22 13.5 

M,: yield moment. 
M,: ultimate moment. 
8,: yield line orientation. 
0,: orientation of the normal to principal strain direction in top cracked concrete layer. 

(Positive angles are measured counterclockwise from x-axis.) 

Y 
L X 

Point 

> x Support 

Dimensions 

in mm 

)+lrl, ‘p (yI+( Cross section 
65 520 520 65 

Dimensions of test specimens 

Fig. 16. Duddeck-Griebenow-Shaper specimens. 
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260 mm 

Fig. 17. Finite element idealization for 
Griebenow-Schaper specimens. 

Duddeck- 

slabs B27, B28 and B33 are subjected to combined 
bending and torsion. The loading patterns for these 
three groups of specimens are shown in Fig. 14. In the 
finite element analysis, a single nine-node Lagrangian 
shell element with reduced integration (2 x 2) rule 
is used to model these reinforced concrete slabs 
(Fig. 14). The details of concrete properties and steel 
information are listed in Table 1. In addition, it 
is assumed that t, = 0.003, v = 0.19, f; = 4&psi, 
E, = 57,OOOfi psi, E, = 30 x lo6 psi and E, = 
O.OlE, for all the slabs. 

The comparisons of the predicted and the exper- 
imental results of these test slabs are plotted in 
moment-curvature diagrams as shown in Fig. 15 and 
are summarized in Table 2. It is seen from the figure 
that the proposed reinforced concrete material model 
is satisfactory in modeling the behavior of these 
specimens, not only in the elastic stage but also in the 
plastic and the cracking stages. Generally, the calcu- 
lated yield moments and the ultimate moment as well 
as the predicted yield line orientation are in good 
agreement with the experimental results. 
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v=e =o 
x 

8 I, * u=e =o 
s Y 

Slab 
Sll 43 

Table 3. Material properties for Duddeck-Griebenow-Schaper specimens 

(&a) (M?a) v (haPa) 
Top Bottom 

P, (%I PJ WI P, (%I Py WI 

2 16400 0.19 670 0.297 0.297 0.611 0.611 

12.2. Corner supported slabs 

In this example, two corner supported slabs, Sll 
and S31, tested by Duddeck et al. [20], are studied. 
Though slab Sl 1 is isotropically reinforced and slab 
S31 is anisotropically reinforced in the x and y 
directions, the total amount of steel reinforcement is 
equal for these two specimens. Both slabs are sub- 
jected to a concentrated loading applied at the center 
of the slab and both of them have well defined 
boundary conditions in which only the transverse 
deflections at the corner supports are restrained. 

Because of the meager information given in [20], 
details of these slabs have been taken from [16] and 
[18]. The dimensions and cross section of the speci- 
mens are shown in Fig. 16 while the input material 
properties are given in Table 3. 

In this example, due to the symmetry of the 
structure and the loading, only a quarter of the slab 
is analyzed. The finite element idealization as well as 
the boundary conditions are shown in Fig. 17, where 
nine nine-node Lagrangian shell elements are used. In 
order to suppress the spurious zero energy modes, a 
full integration (3 x 3) rule is applied to two select 
elements, while the rest of the elements are still 
integrated by the reduced integration (2 x 2) rule. 
The positions of these fully integrated elements are 
shown as shaded areas in the finite element meshes 
(Fig. 17). 

The calculated loadcentral deflection curves for 
specimens Sll and S31 are compared with the test 
results in Fig. 18. Crack patterns for these two slabs 
and the status of yield conditions in the reinforcement 
at the numerical integration points for the last load 
step are given in Figs 19 and 20. 

Generally, the results predicted by the numerical 
simulation are in good agreement with the limited 
experimental deflection data. The predicted limit 
loads (64.0 kN for slab Sl 1 and 34.5 kN for slab S31) 

s31 43 2 16400 0.19 670 0.435 0.158 0.895 0.326 

C, = 0.0027; E, = 201000 MPa; EsP = 2010 MPa. 

Central Deflection (mm) Central Deflection (mm) 

Fig. 18. Loaddeflection plot for Duddeck-Griebenow-Schaper specimens. 



Finite element analysis of concrete structures 649 

7 
6 

--c --c 
_ _ + + ++x 

. % i- + x 
’ ’ ’ ’ 42 

I ++- 

\ \ 
z: + + 

- - 

\ \ XX% + + - 

\\%\%I - 

\\\\\I - 

Crack pattern for bottom concrete layer Yielded reinforcement in bottom layer 

Fig. 19. Crack pattern and yielded reinforcement for slab Sll. 

are very close to the experimental results (61.7 kN for 
slab Sll and 34.3 kN for slab S31). In addition, the 
numerical solution predicts the failure mechanism, 
which is the bottom steel yielding near the load point, 
for both slabs correctly. 

12.3. Diaphragm supported cylindrical shell 

The final example is a cylindrical shell with edge 
beams which has been tested by Harris and 
White [21]. This shell, LCl, is a model constructed of 

- - ‘- -I- +++ 
+++ 

- - - + +++ 

tt 

. . xz x + . % %X% + + 

-@ 

Crack pattern for bottom concrete layer 

reinforced mortar. It has rigid end diaphragms which 
are simply supported at the four corners. This shell 
is subjected to gravity load applied to 72 points on the 
shell surface through an articulated system which 
reduces to a single force applied with a jack. The shell 
surface is therefore drilled with 72 holes to allow the 
tension load cell rods (diameter = 0.5 in.) to pass 
through. In this investigation, these holes are not 
considered; the entire shell surface is asasumed to 
remain solid. 

Yielded reinforcement in bottom layer 

Fig. 20. Crack pattern and yielded reinforcement for slab S31. 

Dimensions in inches 

Top view 

Cross section 

Fig. 21. Harris-White specimen. 

8 X 8 mesh, 
, <diameter = 0.017”, [: 

Section A-A 
Diameter = 

Edge beam 

Fig. 22. Reinforcing details for Harris-White specimen. 
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Fig. 23. Finitc element idealization for Harris-White 
specimen. 

Dim~~si~~s of sheIf LCI are given in Fig. 2 I white 
the reinforcing details are shown in Fig. 22. A 
commercial woven steel mesh with 0,017-in. diameter 
wires at 0.125 in, spacing in both directions was used 
for the shell. This mesh was further carried into the 
edge beam and acted as the tensile and shear 
reinforcement. Additional tensile reinforcing steel 
was provided in the beams by adding two 0.1205-in. 
diameter wires at the bottom of each edge beam, The 
material properties used are given as follows: 
6, = 0.003, Y = O.I9, f: = 4500 psi, J’i = 601 psi, E, = 
3.45 x I@ psi,h = 42,000 psi, E, = 29.8 x IO’ psi, and 
E, = 0. It must be acknowledged that this is a mortar 
model not a reinforced concrete shell. Some differ- 
ences in material behavior exist but verification is on 
a method using mortar properties. 

Due to the symmetry of the structure and the 
loading, only a quarter of the shell is analyzed. The 
finite element ideal~~tion and the boundary con- 
ditions are shown in Fig. 23, where 20 nine-node 
Lagrangian shell elements are used. in order to 
model the additional tensile reinforcing steel in the 
edge beams, an extra eight truss elements with 
elastic-perfectly plastic material properties are used 
and placed at the bottom of the edge beam. In 
the numerical analysis, every nonlinear nine-node 
element is overlaid with an elastic eight-node element 
whose modulus of elasticity is of 10e3 times that 
used for the nonlinear element [16]. All the linear 
and nonlinear shell elements are integrated by 
the reduced integration (2 x 2) rule. It is found 
that this overlaid technique is sufficient to suppress 
the zero energy modes and satisfactory results are 
obtained. 

2*oi 

- Experimental 

----- Predicted 

Average deflection at the midspan of edge beams [in) 

Fig. 24. Load-deflection plot for shell LCI. 

Crack pattern for cop concrete Iqer 

F 
-I; 

Crack pattern for bottom concrete layer 

CE 

I I 

Yielded reinforcement 

Fig. 25. Crack pattern and yielded reinforcement 
shell LGI. 

for 

The deflections at the midspan of edge beams are 
plotted against the total load applied to the shell 
surface in Fig. 24. The predicted crack pattern for 
the shell and the status of yield conditions in the 
reinforcement at the integration points for the last 
load step are shown in Fig. 25. 

In general, the correlation is good between the 
analytical and experimental curves. The predicted 
failure load, I.55 k, is in good agreement with the 
experimental ultimate load, 1.45 k, Furthermore, the 
predicted failure mechanism which is the yieIdjng of 
the reinforcement in the shell as well as in the edge 
beams is also very consistent with the experimental 
result. 

As a conclusion, the good agreement obtained 
in these sets of examples between the numerical 
predictions and the experimental results establishes 
the validity and accuracy of using the proposed 
reinforced concrete material model in modeling the 
flexural behavior as well as the combined mem- 
brane+lexural behavior of reinforced concrete plate 
and shell structures. 
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