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Nonlinear Analysis of Cracked Reinforced Concrete 

by Hsuan-Teh Hu and William C. Schnobrich 

A nonlinear material model for cracked reinforced concrete sub­
jected to inplane shear and normal stresses has been developed. As a 
result, a set of constitutive equations suitable for incremental finite 
element analysis is derived. Features of the present model include the 
smeared crack representation, rotating crack approach, tension stiff­
ening, stress degrading effect for concrete parallel to the crack direc­
tion, and shear retention of concrete on the crack surface. This ma­
terial model has been tested against the experimental data of Vecchio 
and Collins and it has been demonstrated that this material model is 
adequate in describing the post-cracking behavior of reinforced con­
crete. 

Keywords: cracking (fracturing); finite element method; reinforced concrete; 
shear properties; stiffness; stresses; stress-strain relationships; structunl analy­
sis; tension. 

Reinforced concrete is by far one of the most com­
monly used construction materials. Because concrete is 
relatively weak and brittle in tension, concrete cracking 
as well as the interactions between steel and cracked 
concrete can cause highly nonlinear behavior in some 
reinforced concrete structures. Today, with the help of 
computers, it is possible to carry out a finite element 
analysis simulating such nonlinear behavior. However, 
the success of such an analysis depends on a thorough 
understanding and modeling of the composite material 
behavior. 

Many important classes of structures, such as panels, 
walls, slabs and shells, can be approximated as being in 
a state of plane stress. This paper focuses on the con­
stitutive modeling of cracked reinforced concrete ele­
ments under plane stress conditions. Based on the 
smeared crack representation, 1 a rotating crack ap­
proach is used in formulating the constitutive matrix 
for cracked concrete. Tension stiffening, a stress de­
grading effect for concrete parallel to the crack direc­
tion, and the shear retention phenomenon are all dis­
cussed briefly. Finally, the post-cracking constitutive 
equations for reinforced concrete are established and 
tested against the experimental data of Vecchio and 
Collins.2 

Though concern has been expressed as to the validity 
of this model in Reference 3, it is noted there that this 
model is rotationally invariant. Furthermore, questions 
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are raised about the rotation of physical defects in a 
material. However, the view that should be adopted is 
that the cracks defined by this model are not cracks in 
the strict sense, but rather notational cracks defining 
the average crack direction after the stress redistribu­
tion of the entire structure. 

For a number of structural elements such as walls, 
plates, and shells, the need exists to define behavior be­
yond the basic linear regime. The determination of re­
distribution characteristics, basic failure modes, or pat­
terns are the sorts of things that one might wish to es­
tablish. To proceed entails some definition of the 
nonlinear characteristics of the material. Precise point 
conditions are not important; more global section 
properties are adequate to establish such overall behav­
ioral characteristics. Analyses that incorporate such re­
finements as fracture mechanics, concern about crack 
localization, etc. are unneeded expenses. The material 
model presented in this paper is considered precise 
enough to address plate and shell problems with the 
objective of investigating basic overall behavior. 

CONSTITUTIVE MATRIX FOR 
REINFORCING STEEL 

Reinforcing steel is treated as an equivalent uniaxial 
layered material placed at the depth of the centerline of 
the bars and smeared out horizontally over the region 
of bar effect (Fig. 1). As many layers are used as there 
are layers of bars in the cross section. The stress-strain 
curve of reinforcing steel is modeled by an idealized 
bilinear curve identical in tension and compression (Fig. 
2). The dowel action of the reinforcing steel is ne­
glected and the bond between steel and concrete is as­
sumed to remain perfect. The incremental constitutive 
matrix for the ith steel layer C,; in the material coordi­
nates x', y', as shown in Fig. 1, can be written as 
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[
P;E, 0 0] 

[C],; = 0 0 0 
0 0 0 

(1) 

where P; and E, are the steel percentage and the modu­
lus of elasticity of the reinforcement in the ith layer. 
When yielding of steel occurs, the incremental consti­
tutive matrix reverts to 

[
p;Esp 0 0] 

[C],; = 0 0 0 
0 00 

where E,P is the plastic modulus for steel. 

y 

Reinforcing 
Steel 

the i-th 

(2) 

X 

Fig. 1 - Equivalent steel layer and material coordi­
nates for steel 

Fig. 2 - Idealized stress-strain curve for steel 
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ELASTIC CONCRETE 
When the computed concrete stress lies inside the 

failure surfaces (Fig. 3), the behavior of concrete can be 
considered as purely elastic and the incremental stress­
strain relationships for concrete can be written as 

E ~1 P 0 ] [CJc = ~ 2P 1 0 
1-,- 00 1-v 

2 

(3) 

in which Ec is the initial modulus of elasticity for con­
crete and vis its Poisson's ratio. 

SINGLY CRACKED CONCRETE 
In this study, a smeared crack modeP is adopted. 

Within this model the initiation of a cracking process at 
any location happens when the concrete stresses reach 
one of the failure surfaces either in the biaxial tension 
region or in a combined tension-compression region. In 
the biaxial tension region, this surface is defined as4 

with 

Failure 
Surface 

0 (4) 

ex = f/ If; 

Fig. 3 - Failure surface of concrete in the. two dimen­
sional principal stress plane 
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and 

where J: is the maximum compressive strength of con­
crete and J: is the maximum tensile strength of con­
crete. The quantities u1 and u2 are the maximum and the 
minimum principal stresses for concrete. 

In the combined tension-compression region the fail­
ure surface is defined as 

where for -oo.:::: u/u2 < -0.103 

c = 1 - 0.02886(u2/u1) - 0.006657(u/u1)2 
- 0.0002443(u2/u1) 3 

and for -0.10.3 ~ a,./112 < 0 

With the smeared crack representation, concrete is 
treated as an orthotropic material with principal axes 
normal and parallel to the crack direction (Fig. 4). The 
incremental stress-strain relationships associated with 
the crack coordinates then become , 

[0 0 OJ 
C' = OE, 0 

0 0 p.G 
(6) 

where E, is the tangent modulus of concrete parallel to 
the crack direction (choice of values discussed later). p. 
is the shear retention factor with 0 < p. ~ 1 (also dis­
cussed later). Gc = EJ2 is the shear modulus of 
cracked concrete. The Poisson's ratio vis taken as zero 
due to the lack of interaction between the two orthog­
onal directions. 

TENSION STIFFENING 
The use of the orthotropic constitutive Eq. (6) to 

represent cracked concrete may not be totally realistic, 
because the cracked concrete of a reinforced concrete 
element can still carry some tensile stress in the direc­
tion normal to the crack. This phenomenon is termed 
tension stiffening.'-6 In this study, a general tension 
stiffening curve suggested by Bhide' is used. This curve 
is given as follows 

J: 
f, = 1 + 1000 e,(\cJ»\190)u (7) 

where/, and e, are the average tensile stress and the av­
erage tensile strain normal to the crack direction. q, is 
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measured in degrees counterclockwise from the steel 
direction to the crack direction. In the case of unequal 
reinforcement in two orthogonal directions, the axis of 
the stronger reinforcement is taken as the reference di­
rection. Eq. (7) is plotted for various values of q, in Fig. 
5. 

In situations where the reinforcing steel yields, the 
average tensile stress of cracked concrete is close to 
zero.2 Therefore, the tension-stiffening effect should 
not artificially increase the total stress in the direction 
of any yielded reinforcement; otherwise, an overesti­
mation of the ultimate capacity may be expected. If 
there are N layers of steel existing at a concrete section, 
then a generalized upper bound for the concrete ten­
sion-stiffening stress can be written as 

N 

f, ~ ~ Pi (f yt - fs~) cos2 8i (8) 
I= I 

in which /.1 and /y1 are current stress (in tension) and 
yield stress, respectively, for the ith steel layer. 81 is 
measured couterclockwise from ith steel axis to the di­
rection normal to crack. 

X 

Fig. 4 - Crack coordinates 
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Fig. 5 - Tension-stiffening curves suggested by Bhide 
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Fig. 6- Stress-strain curve for concrete parallel to the 
crack direction 

STRESS DEGRADING EFFECT FOR CONCRETE 
PARALLEL TO CRACK DIRECTION 

After cracking has taken place, the concrete parallel 
to the crack direction is still capable of resisting either 
tensile or compressive forces. When it is subjected to 
tension, a pure linear-elastic behavior is assumed (Fig. 
6) and E, is taken as Ec in Eq. (6). On the other hand, 
when it is subjected to compression, experimental 
results2•8 show that the tensile cracks have caused dam­
ag_e to the concrete with the transverse tensile strain, 
having a degrading effect not only on the compressive 
strength but also on the compressive stiffness. There­
fore, concrete in this situation is softer, with weaker 
values than those recorded from a standard cylinder 
test. 

Several formulas2•9•10 have been proposed to deter­
mine the degraded maximum compressive strength !em 
for concrete parallel to the crack direction and the ex­
perimentally determined relationship suggested by Vec­
chio and Collins10 is used in this study (Fig. 7)~ That is 

/em 1 - = E:; 1.0 
J: 0.8 + 0.34E,/E0 

(9) 

where Eo is the strain corresponding to the maximum 
concrete compressive strength J: . After the peak 
strength !em is determined, the widely used stress-strain 
curve suggested by Saenz11 is employed to calculate the 
concrete compressive stressfc. We have (Fig. 6) 

lc= 
E.e (10) 

in which 
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Fig. 7 - Degraded maximum compressive strength for 
cracked concrete 

R = fcm 
u fcJ 

R - ~ f-

Eo 

and 

E - Jcm 
0-

Eo 

For fcf and E1, Hu and Schnobrich4 used Ro = 4 and R, 
= 4; Darwin and Pecknold12 used R., = 5 and R, = 4. 
Generally, to define o1 and E1 on any rigorous experi­
mental basis is impossible because the descending 
branch of the stress-strain curve is highly test-depen­
dent and is usually unavailable from statically determi­
nate tests. In this study, it is assumed that R., = 4 and 
R, = 4. 

The tangent modulus E, used in Eq. (6) can then be 
calculated by differentiating Eq. (10) 

(11) 

It should be noted that, due to degrading of the maxi­
mum compressive strength, the tangent modulus is also 
reduced simultaneously. To prevent the numerical dif­
ficulty associated with negative tangent moduli, once 
the peak stress !em has been reached, E, is set to zero 
and the unbalanced stresses are released in a stepwise 
fashion (Fig. 6). 

SHEAR RETENTION FACTOR 
After cracking has taken place, cracked reinforced 

concrete can still transfer shear forces t~rough aggre­
gate interlock or shear friction and dowel action. To 
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take the shear stiffness of cracked concrete into ac­
count in the smeared crack model, a reduced shear 
modulus p.Gc is retained (with 0 < p. ~ 1) in the con­
stitutive Eq. (6) instead of dropping that capacity to 
zero. Using a reduced shear modulus not only im­
proves the realism of the cracking representation dur­
ing the finite element analysis but also removes most of 
the numerical difficulties caused by the singularity of 
the composite material's constitutive matrix.6 

Various forms of the shear retention factor have been 
proposed. 6 However, numerous analytical results have 
demonstrated that the particular value chosen for p. 
(between 0 and 1) does not appear to be critical, but 
values greater than zero are necessary to prevent nu­
merical instabilities.4•6 Consequently, a constant value 
of p. = 0.25 is used in this investigation. 

DOUBLY CRACKED CONCRETE 
Upon further loading of singly cracked concrete, a 

second set of cracks can form in the direction normal 
to the first set of smeared cracks. Therefore, in that di­
rection, if the concrete stress is less than f!, then con­
crete remains singly cracfed·. OUierwise, il~ it is greater 
than J:, then the second set of cracks forms. The con­
stitutive matrix for doubly cracked concrete is written 

[0 0 0 J [C'] = 0 0 0 
0 0 p.G 

(12) 

and the tension stiffening stresses normal to both crack 
directions can be calculated by using Eq. (7). 

CONSTITUTIVE MATRIX FOR CRACKED 
CONCRETE 

In most conventional finite element analyses of rein­
forced concrete structures, crack directions are as­
sumed fixed once they form and while they remain 
open. This conception is termed the "fixed crack 
model" and has been used by many investigators. 6 

However, this model leads to crack directions that can 
be inconsistent with the limit state. 13 The change in the 
crack direction and the consequential change in direc­
tion of the maximum stiffness were clearly observed in 
the experiments of Vecchio and Collins.2 Therefore, the 
need for an algorithm that can account for this rotat­
ing crack effect is obvious. 

The rotating crack concept for finite element analy­
sis of reinforced concrete was first introduced by Cope 
and Rao. 14 The basic assumption for this approach is 
that after cracking takes place, the crack direction is 
always perpendicular to the direction of the major 
principal strain axis during the course of loading. This 
concept has been further extended by Gupta and 
Akbar13 by obtaining the rotating crack tangent stiff­
ness matrix as the sum of the conventional tangent 
constitutive matrix for cracked concrete, plus a contri­
bution that represents the effect df the possible changes 
in crack direction. This can be written as 
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.!1{u} = [C]fl{e} + d~;} d() 

= {[C]1 + [G]}.!1{e} (13) 

in which [C]1 is the constitutive matrix for a fixed crack 
model while [G] reflects the possible changes in the 
crack direction. 

The rotating crack model developed by Gupta and 
Akbar13 has been further modified by Milford and 
Schnobrich1' and Hu and Schnobrich4 by taking ac­
count of the nonlinearity of concrete in compression 
while including tensile stiffening and shear retention for 
the cracked concrete. The constitutive matrix used in 
this analysis has been detailedly derived in Reference 4. 
This matrix has the following form 

[C]c = [T(O)JT[C'][T(O)] + [G] (14) 

where 

r cos29 sin29 sin()cos() l 
[T(O)] = I sin29 cos29 - ~in9cos~ (15) 

l- 2sin9cos9 2sin9cos() cos29- sin29J 

[G] = (ux.- uy.)cos229 
2(ex - Ey) 

- sin229 sin229 sin29cos29 [ 
sin229 - sin229 - sin29cos29] 

- sin29cos29 sin29cos29 cos229 (16) 

and () is measured counterclockwise from global x-axis 
to crack x' -axis (Fig. 4). 

For singly cracked concrete, [C'] in Eq. (14) can be 
calculated by Eq. (6). ux. and uy. in Eq. (16) are the ten­
sion-stiffening stress normal to the crack direction and 
the concrete stress parallel to the crack direction, re­
spectively. For doubly cracked concrete, [C'] in Eq. 
(14) can be calculated by Eq. (12). Ux· and Uy• in Eq. (16) 
are the tension-stiffening stresses normal to the first 
crack and the second crack directions. 

CONSTITUTIVE MATRIX FOR REINFORCED 
CONCRETE 

The total material stiffness matrix for reinforced 
concrete [C]rc is the sum of the component matrices of 
concrete and steel and can be written 

N 

[C]rc = [C]c + 2: [T(c/>;)]T[C],;[T(cJ>;)] (17) 
i=l 

where [C]c can be determined by using Eq. (3) or (14). 
[C),; can be determined by using Eq. (1) or (2) and cP; is 
the direction angle of the ith reinforcement (Fig. 1). 

COMPARISON WITH EXPERIMENTAL RESULTS 
The response of reinforced concrete panels subjected 

to inplane shear and normal stresses has been exten­
sively investigated by Vecchio and Collins.2 The test 
panels were 890 mm (35 in.) and 70 mm (2.75.in.) thick 
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(a) Plan View 

(b) Finite Element Idealization 

Fig. 8 - Vecchio-Collins specimens 

3 

2 

2 

1 

and were reinforced with welded wire mesh. The plan 
view of reinforcing steel and loading directions are 
shown in Fig. 8(a). The finite element idealization for 
the test specimen is shown in Fig. 8(b), where a fully 
integrated nine-node isoparametric element is used to 
model the reinforced concrete panel. To solve the non­
linear equilibrium equations, the incremental iterative 
Newton-Raphson scheme is employed. 

A list of the analyzed panels along with concrete 
properties and steel information are given in Table 1. 
The following material properties are assumed in the 
analysis: f/ = 0.33 J1[ MPa; Ec = 4730 J1[ MPa; E, 
= 200,000 MPa; E,P = O.OlE,; and v = 0.19. All these 
panels are subjected to pure shear up to failure. One 
exception is panel PV28, which is subjected to com­
bined tension and shear with the fn/ f. ratio being fixed 
and equal to 0.32. 

The failure mechansims for the panels analyzed in 
this study fall into three categories, namely: (1) steel 
yielding in both directions (SY); (2) concrete failure af­
ter yielding of the weaker reinforcement but prior to 
yielding of the stronger reinforcement (C1); and (3) 
concrete failure prior to yielding of any reinforcement 
(C2), To carefully examine the stress-degrading effect 
parallel to the crack direction and the influence of ten­
sion stiffening, three panels-PVll, PV19, and PV22-
which cover the three failure modes mentioned above, 
are investigated through the numerical simulation. 

The results for panels PVll, PV19, and PV22 are 
plotted in Fig. 9. For panel PVll the failure mode is 
SY. Both the (a) and (b) calculated solutions, which ex­
clude tension-stiffening stress, still predict the ultimate 

Experimental 

(a) Stress degrading, 
no tension stiffening 

(b) No stress degrading, 
no tension stiffening 

(c) Stress degrading, 
tension stiffening 

,~ ----------

PV22 

16 ° 0 2 4 6 8 10 12 

Shear Strain x 1000 

Fig. 9 - Verification of stress-degrading effect and tension stiffening (1 MPa = 
0.145 ksi) 
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load and failure mechanism accurately. Because the 
level of tensile strain normal to the crack is relatively 
small compared with E0 , there is no severe damage to 
the concrete in the direction parallel to the crack and, 
therefore, the stress-degrading effect is not prominent 
in this specimen. 

For Panels PV19 and PV22, the failure modes are Cl 
and C2, respectively. The solution (a) predicts the fail­
ure mechanisms correctly for both panels. Although the 
calculated ultimate loads are underestimated a little, the 
solution is still reasonable because the tension-stiffen­
ing stress has not been taken into account. On the other 
hand, the solution (b) not only overestimates the ulti­
mate loads but also predicts the wrong failure mode SY 
for both panels. The discrepancy between solutions (a) 
and (b) for these two panels does show an influence 
from the stress-degrading effect. 

On the base of the rotating crack model with stress­
degrading effect, solution (c) in Fig. 9 is obtained by 
aub:lhg a t'ension-st'Ii'iemhg st'ress cont'noution to tne 
concrete. In general, good agreement is obtained be-

5 

4 

3 

' 
2 f 
1 
r PV10 

tween solution (c) and the experimental results. By 
comparing (c) with solution (a), the predicted behavior 
of panels PVll, PV19, and PV22 is greatly improved 
by considering the tension stiffening after concrete 
cracking takes place. 

Finally, the rotating crack model with stress-degrad­
ing effect and tension-stiffening stress applied to con­
crete is employed to analyze the remaining panels. 
Comparisons of the experimental response and the nu­
merical results are shown in Fig. 10, while further de­
tails are given in Table 2. In general, the numerically 
predicted ultimate loads and the failure modes gener­
ated with these material models are in good agreement 
with the experimental results. The crack orientations at 
the final loading stage are also very consistent with the 
experimental data. 

CONCLUSIONS 
B'asea' on a smearea' craci represent'at'Ion cuup1eu' 

with the rotating crack approach, the presented 

Experimental 
Predicted 
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Cl) 
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00 

00 14 ° 0 12 
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2 
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PV20 

4 / 
2 / PV28 

1 

00 2 4 6 8 10 12 ° 0 2 4 8 10 

Shear Strain x 1000 

Fig. 10 - Comparison of experimental and numerical shear stress-strain curves 
(1 MPa = 0.145 ksi) 
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Table 1 - Material properties for Vecchio·Collins 
specimens 

Steel Concrete 

/,u f,, J: ' 
Panel p, p, MPa MPa €, MPa 

PVlO O.oi785 0.00999 276 276 0.00270 14.5 
PVll 0.01785 0.01306 235 235 0.00260 15.6 
PV12 0.01785 0.00446 469 269 0.00250 16.0 
PV16 0.00740 0.00740 255 255 0.00200 21.7 
PV19 0.01785 0.00713 458 299 0.00215 19.0 
PV20 0.01785 0.00885 460 297 0.00180 19.6 
PV22 0.01785 0.01524 458 420 0.00200 19.6 
PV28 0.01785 0.01785 483 483 0.00185 19.0 

I MPa = 0.145 ksi. 

constitutive model is capable of predicting the post­
cracking behavior of reinforced concrete elements sub­
jected to inplane shear and normal stresses. In addi­
tion, it has proved adequate in modeling the reinforced 
concrete elements, such as beam, plate, and shell, sub­
jected to flexural forces. 4 There are several conclusions 
obtained from this study: 

1. The Inclusion of the stress-degrading eiiect ior 
concrete parallel to the crack direction is crucial, espe­
cially for reinforced concrete panels that fail by con­
crete failure. This is important if the degradation ob­
served in the experimental data actually carries over to 
real structures. 

2. After concrete cracking takes place, applying the 
tension-stiffening stress to the concrete greatly im­
proves the predicted behavior of the reinforced con­
crete panels, whether these panels fail either by con­
crete failure or by steel failure. 

3. The proposed material model is a powerful tool 
that is easily programmed into a finite element analy­
sis. All required input data are standard material prop­
erties; therefore, parameter study prior to the numeri­
cal analysis is not necessary. 
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NOTATION 
constitutive matrix of concrete in global coordinates 
constitutive matrix of concrete for fixed-crack model 
constitutive matrix of cracked concrete in crack coordi­
nates 
constitutive matrix of reinforced concrete in global co­
ordinates 
constitutive matrix of ith steel layer in material coordi­
nates 
initial modulus of elasticity for concrete 
modulus of elasticity of steel 
plastic modulus of steel 
tangent modulus of concrete 
compressive stress of concrete 
maximum compressive stress of concrete (positive quan­
tity) 
stress corresponding to €1 on the uniaxial stress-strain 
curve 

Table 2 - Experimental and numerical results 
for Vecchio-Collins specimens 

Experimental Predicted 

Failure P., Failure P., 

Panel mode MPa (J* mode MPa (J* 

PV10 C1 3.97 52 C1 3.73 49 
PVll SY 3.56 50 SY 3.63 49 
PV12 C1 3.13 58 C1 3.03 60 
PV16 SY 2.14 45 SY 1.95 45 
PV19 C1 3.96 57 C1 4.06 56 
PV20 C1 4.26 54 C1 4.43 54 
PV22 C2 6.07 45 C2 6.08 46 
PV28 C2 5.80 45 C2 5.50 45 

• Average onentat10n of maximum prmc1pal concrete stress and strain, mea­
sured counterclockwise in degrees from the weaker reinforcement direction. 

I MPa = 0.145 ksi. 

f. 
/,, 
/, 
/,' 
/, 
f,, 
[G] 

G, 
[T( )] 
(x,y) 
(x' ,y') 

€, 

p, 

"' 
q,, 
p. 
(J 

IJ, 

p 

u, 
u, 
U~,U,,Txy 

ux' ,uy' 

degraded maximum compressive stress of concrete (posi­
tive quantity) 
normal stress 
stress for ith steel layer 
tensile stress of concrete 
maximum tensile strength of concrete 
shear stress 
yield stress for ith steel layer 
matrix that reflects the possible changes in the crack di­
rection 
shear modulus of cracked concrete 
transformation matrix 
global coordinates 
material coordinates or crack coordinates 
strain corresponding to 1: in an uniaxial compression test 
maximum compressive strain on the uniaxial stress-strain 
curve 
tensile strain of concrete 
steel percentage for ith steel layer 
angle measured counterclockwise in degrees from strong 
reinforcement direction to crack direction 
angle between the ith reinforcement and the global x-axis 
shear retention factor 
rotational angle between the global coordinates and the 
crack coordinates 
angle between the ith steel axis and the direction normal 
to crack 
Poisson's ratio 
maximum principal stress of concrete 
minimum principal stress of concrete 
stresses of concrete in global coordinates 
stresses of concrete in crack coordinates 
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