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ABSTRACT

The buckling strength of fiber-composite laminate shells with a
given materiai system is maximized with respeci to fiber
orientations. While a modified Riks nonlinear incremental
algorithm is utilized to calculate the buckling ioad and to study the
postbuckling behavior of the composite shells, a sequential linear
programming method together with a simple move limit strategy is
used to optimize the buckling strength of the shells. Results of this
optimization study for simply supported composite cylindrical shells
subjected to external hydrostatic compression and with different
laminate layups, [+6/90,/0]4 and [6/¢/90,/0};, arc presented.

INTRODUCTION

Appiications of fiber composite maicrials (Fig. 1) to advanced
shell structures such as aircraft fuselages, deep submersibles and
surface ships have been increased rapidly in recent years. These
composite laminate shells in service are commonly subjected to
various kinds of external Ioading which may induce buckling. In
many situations buckling is an undesirable phenomenon. Hence,
structural instability becomes a major concern in safe and reliable
design of the advanced composite shells, The buckling strength of
fiber composite shells heavily depends on ply orientations, e.g. Sun
and Hansen [1], Hu and Wang [2]). Thercfore, the proper sclection of
appropriatc fiber orientations for a given composite material
system to achieve the maximum buckling strength of composite
shells becomes a crucial problem.

Researches on the subject of structural optimization have been
reported by many investigators, e.g. Schmit [3]. Among various
optimization schemes, the sequential linear programming method is
one of the most popular approaches in solving structural
optimization problems and it has bcen successfully applicd to many
large scale structural problems, e.g. Vanderplaats [4], Haftka et al.
[5], Zienkiewicz and Champbell {6]. Hence, in this paper the
sequential linear programming method has been adopted and used
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together with a simple move-limit strategy to optimize the buckling
strength of fiber-composite taminate cylindrical shells with respect
to thc fiber oricntations.

This study uses a modified Riks nonlinear incremental algorithm
implemented in the ABAQUS finite element program [7] to calculate

the buckling loads and to study the postbuckling behavior of
composite shells. For the purpose of comparison, optimization based
on lincarized buckiing analysis is also carried out. In this paper,
first thc lincarized buckling analysis, thc nonlincar buckling
analysis, the constitutive matrix formulation for composite shells,
and the sequential linear programming method are briefly
discussed. Then the results of the buckling optimization for simply
supported composite cylindrical shells subjected to external
hydrostatic compression and with different iaminate 1ayl.1pS,
[1-9/902/015 and [6/¢/90,/0]g, are presented. Finally, conclusions

obtained from the study are given.

LINEARIZED BUCKLING ANALYSIS

In a finite-element modeling scheme for nonlinear proble
e

the load-displacement relationship for a structure can be xpressed
in an incremental form as follows:
(K], d{U} = d(P} e

where [K]; is a tangent stiffness matrix, d{U} an incremental nodal
displacement vector and d{P} an increm-nial nodal force vector.

If it is assumed that the linear ory of small deformation
before buckling holds, the linearized buckling formulation, e.g.
Cook et al. [8], then leads to a tangent stiffness matrix with the

following expression:

(K], = [K]. + [Klg (2)
where (K]y is a linear stiffness matrix and [K]g a geometric stiffness
matrix dependent upon stresses. '

The bifurcation solution for the linearized buckling problem
then may be determined from the following eigenvalue equation:

(K] + MKl]g ) {w) = (0} (3)

where A is an eigenvalue and (y)} an eigenvector. The critical
buckling load P., can be found from P, = AP, where P, is the
nominal load which corresponds to the stress state .

BUCKLING ANALYSIS

In the finite element program ABAQUS, the nonlinear response
of structures is modeled through the incremental updated
Lagrangian formulation, e¢.g. Bathe [9]. In order to model the
potential decrease in load:z and displacements as the solution
evolves, a modified Riks nonlinear incremental algorithm [7] in
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ABAQUS is used to construct the equilibrium solution path. In this
algorithm, the nonlinear procedure is based on a motion of a given
distance along the tangent line (defined by the tangent stiffness
matrix) to the current solution point. Then search for an
equilibrium solution in the plane, that passes through the current
solution point and that is orthogonal to the same tangent line, can
be carried out using an iterative algorithm.

bifurcation from the p P

postbuckling path, a gcomctric imperfection of the composite shell
can be introduced by superimposing a small fraction of the lowest
eigenmode, which is determined by a linearized buckling analysis,
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where (I} is the resulting imperfect nodal coordinates of the shell,
{O} is the original nodal coordinates of the shell, € is a scaling
coefficient, t is the thickness of the shell, and {y} is the normalized
lowest eigenmode. In this study, € is taken to be 0.001 for all the
nonlinear buckling analyses.

CONSTITUTIVE MATRIX FOR FIBER-COMPOSITE LAMINAE

The elements used in the numerical analyses are eight-node
isoparametric shell elements with six degrees of freedom per node
(three displacements and three rotations). The shell formulation is
based on Mindlin-type displacement field assumptions which allows
transverse shear deformation [7].

During a finite element analysis, the constitutive matrices of
composite materials at element integration points must be caiculated
before the stiffness matrices are assembled from element level to
struciurai ievei. For [{iber-composite iaminate materials, each
lamina can be considecred as an orthotropic layer in a plane stress
condition. The stress-strain relations for an orthotropic lamina in
the material coordinates (Fig. 1) at an integration point can be
written as

{e1=1Q;1 {&'} (5)
{7 =1Q;) v} (6)
r v -
I-vigvar I-vigvay . o
' I E E | a1U13 v
Qil=} _Ya1&11 22 0 ' [Q2]=|_ 0 ayGos ] (7)
I I-vigvay 1vigvyy | )
- 0 0 Gyp -
where {0} = (0], 09, 11} ", () = (113, 793} 7 (&) = {epa e vya) ' (Vi) =
{'113.“23}T The a; and @, arc shear correction factors and are taken
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to be 0.83 in this study. The constitutive equations for the lamina in
the element coordinates become

(0} =(Q,] (). Q=17 Q)] (T} (8)

() = [Qy) (v} . (Qq) =Tyl [Q3] [T, %)
i cosz¢ sinzdp singcos¢d ]

[Ty1= sin2¢ cos2¢ -sin¢cos¢ (10)

2

. .2
L -2sin¢cosd 2sindcosé cos ¢-sin’o

[ cosd sin¢]]
(T,]= (1)
L-sin¢ cos¢

T =
where (o} = {oy, oy, 1xy}T. {ty} = {7z ryz)T. (e} = (ex, ey Yxy) s (v} =
{vx2 yyz]T, and ¢ is measured counterclockwisc from the element

g2l
local x-axis to the material 1-axis. Assume {e,]) = {Exo‘ayO'ny0}| are
the in-plane strains at the mid-surface of the section and {x]} = [x.,

Ky “xv} are the curvatures. The in-plane strains at a distance, z,
from the mid-surface become:

{e) = {eg) +2{x} {12)
If h is the iotal thickness of the section, the stress resultants, (N} =
T - T _ T
{Ny» Ny. ny} » (M} = (M, My. Mxy} and (V} = {Vy, Vy} , can be
defined as

h/2
=" o1z = M 1Quittegiealxien (13.2)
n/2 Jons2
h/2 h/2 L PN
(M1=Jr ! z{o}dz=Jf "% 21Q,I({eg 42 {x])dz (13.b)
-h/2 -h/2
wi= M7 gdz = (M2 1Q0v,0dz (13.c)

o2 Jons2

If there arc n layers in the layup, the constitutive matrix for
composite materials al an element integration point can be written
as a summation of integrals over the n iaminae in the foilowing
form:
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where zjl and zjb are the distance from the mid-surface of the

section to the top and the bottom of the j-th layer respectively. The
[O] is a 3 by 2 matrix with all the coefficients equal to zero.

SEQUENTIAL LINEAR PROGRAMMING

A general optimization problem may be defined as the following:

Minimize: f(x) (15.a)
Subjected to: gi(x)s0, i=1,..,r (15.b)
hj(zg)=0. j=r+¢l,,m (15.¢)
oy < v. £ n L =1 n f1& Ay
yk - I\k - \ik, A= 1, » i \IJ-\J}
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hj(z;_) are ecquality constraints, and x = {x;, X5, «., X is a vector of

design wvariables. If a particular optimization problem requires
maximization, we simply minimize -f(x).

The concept of a sequential linear programming is that given a

; ; = T
feasible solution Xg = {xol' Xg2 v Xgn ) for an optimization
problem, a lincar programming problem may be established by

expanding the nonlinear functions about x, in a Taylor series, and
ignoring terms of order higher than the Ilinear ones. With this
approximation, the optimization problem, Egs. (15.a-15.d), becomes:

Minimize: f(x) = f(xg) + Vf(x_o)T Sx. (16.a)
Subjected to:  gj(x) = gi(x,) + Vgi(xy)' 85 < 0 (16.b)
hj(l) = hj(xg) + V'HJ'(ZLO)T 8x =0 {16.c)
Pk S X S qg (16.d)

where 8x = {x|-X571, X3-Xg9, oo "n"‘on]T- A solution for Egs. (16.a-

16.d) may be easily obtained by the simplex method, e.g. Kolman and
Beck [10]. After obtaining an initial approximate solution for Egs,

(16.a-16.d), say x;, we can lincarize the original problem, Egs. (15.a-

' -~ anmd oalea L~ PN Ly = i a e P L
15.d), at X and solve the new linear programming problem. The

process is repeated until a convergent solution is obtained.

Allhough thc procedure for a scquential linear programmmg is
Sii“‘upw. difficultics may arisc during thc iicrations. First, the
optimum solution for the approximate linear problem may violate
the constraint conditions of the original optimization probiem.
Second, in a nonlinear problem, the true optimum solution may
appear beiween iwo constraint intersections. A straightforward
successive linearization in such a case may lead to an oscillation of
the solution between the widely separated values. Difficulties in
dealing with such problems may be avoided by imposing a "move
limit" on the linear approximation, e.g. Vanderplaats [4], Haftka et
al. [5], Zienkiewicz and Champbcll [6]. The concept of a move limit is
that a set of box-like admissible constraints are placed in the range
of 8x. In general, the choice of a suitable move limit depends on
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experience and also on the results of previous steps. Once a proper
move limit is chosen at the beginning of the sequential linear
programming proccdurc. this move limit should gradually approach
to zero as the iterative process continues, e.g. Vanderplaats [4],
Zienkiewicz and Champbell [6], Esping [11].

The algorithm of a sequential linear programming with selected
move limits may be summarized as follows: (1) Linearize the
nonlinear objective function and associated constraints with
respect to an initial guess x,. (2) Impose move limits in the form of
S (x-25) <R, where S and R, are properly chosen positive
consiraints. (3) Solve the approximate lincar programming problem
to obtain an initial optimum solution x;. (4) Repeat the process by
redefining x; with X, until either the subsequent solutions do not

change significantly (i.e., true convergence) or the move limit
approaches to zero (i.e., forced convergence).

NUMERICAL ANALYSIS

lin imjzatj i wi
In this section, a simply supported fiber-composite laminate
cylindrical shell (Fig. 2) with laminate layup [+6/90,/0]; under
external hydrostatic compression is investigated. The objective of

......................................

this study is to determine the optimal fiber angle 6 to maximize the
buckling load » of the shell and to compare the result of the

SUCKINE 088 Per ©F R0 snc ahc 10 cOollipalc 1Ac et

optimization using nonlinear buckling analysis with that using
lincarized buckling analysis.

Based on the sequential linear programming method, in each
iteration the current, linearized optimization problem becomes:
. 9P¢r
Maximize: Pcr(0) = pc,(eo) +(8-84) % 1. . (17.a)
TU=u
o
Subjected to: 0° <9 < 90° (17.b)
-r><q><0.5‘°‘s(9-90)sx'quO.Ss (17.¢)

where 6, is a solution in the current iteration. The r and q are the

size and the reduction raie of the move limit. In this study, the

values of r and q are selected to be 10° and 0.9(N-1), where N is a
current itcration number. To control the oscillation of the solution,
a parameter 0.5% is introduced in the move limit, where s is the
number of oscillation of the derivative dp /98 that has taken place

hafara tha anrran a i i
before the current iteration. The value of s increases by 1 if the

sign of dp. /06 changes. Whenever oscillation of the solution
occurs, the range of the move limit is reduced to haif of its current
value, which is similar to a bisection method, e.g. Maror [12]. This
expedites the solution convergent rate very rapidly.

7 < PRSQESyI PI

The derivative dp. /36 in Eq. (17.a) may be approximated by
using a forward finite-difference method as follows:
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apgr [pcr(9°+AB)'pcr(eo)] 18
% - 20 (18)

In order to determine the value of dp../06 in Eq. (18), two buckling
analyses are needed to compute p. (8,) and p,.(6,+A8) in each

iteration. In this study, the value of A® is selected to be 1° in most
iterations.

Important numerical results obtained in optimization study are
given in Fig. 3, which shows the fiber orientation 6 and the

associated critical buckling pressure p., determined in each

iteration for the shell. The initial values of 6 are selected to be 90°
for linearized buckling analysis as well as nonlinear buckling
analysis. Both solutions converged within 12 iterations. Though, the
optimal critical buckling pressure, 24.7 ksi, computed by using
linearized buckling analysis is lower than that, 25.5 ksi, computed
by wusing nonlinear buckling analysis, the optimal value of 6

converges to 60.8° for both analyses.

For the optimization study wusing the nonlinear buckling
analysis, in each iteration two nonlinear buckling analyses to
calculate the derivative information of Eq. (18) and two linearized
buckling analyses to generate the initial imperfections for the
nonlinear analyses are required. Since the trends in finding the
optimal fiber orientation are the same wusing both buckling
analyses, it is suggested that the calculation of the derivative using
the nonlinear buckling analysis may be substituted by that using
the linearized buckling analysis. The result is that in each iteration
only one nonlinear buckling analysis to evaluate the critical

buckling pressure and two linearized buckling analyses to compute
the derivative are needed. The elimination of one magsive nonlinear

buckling analysis will significantly reduce the computer time for
the entire optimization calculation,

Figure 4 shows the load-end displacement curves for the
composite shell associated with the first iteration and the final
iteration (optimal solution), which are computed by wusing the
nonlinear buckling analysis. It can be seen that under the optimal
condition, not only the critical buckling pressure of the shell is
increased but also the post buckling strength of the shell is greatly
improved.

Buckling Optimization of Composite Shell with Two Design Variables
In this section, the composite laminate shell with the same
geometry, end conditions and loading conditions as that in the

previous section but with lamlnale layup [68/¢/90,/0]); is
invesiigaied. Here, ihe consiraint on the fiber angie +6 set in the
previous section has been released. The objective of this study is
then to find the optimal fiber orientations 6 and ¢, and to examine
how the change of the fiber angle constraint will influence the
optimal critical buckling pressure pg.
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Based on the sequential linear programming method, in each
iteration the current, linearized optimization problem becomes:

ap
Maximize: Pcr(8,0) = Per(6g:9g) + (8-85) 30 6=0,,0=0,
A ]
Fer
+ (4-6,) 30 locg oes_ (19.a)
oY YO
Subjected to: 0° <6< 90° (19.b)
-90° < ¢ < 0° (19.c)
Fy X G wNESYT 2 (0.0 Yer wa, xD §8 (10 4)
1 XG4 RV S \UYgy ST A AV.od \as.Gy
-Ty X Qg X 0.552 S ($-¢) < 15 X gy X 0.552 (19.¢)

where 6, and ¢, are the solutions in the current iteration. The

values of ry; and ry (the sizes of move limits) are selected to be 109,

The values of q; and q, (the reduction rates of move limits) are

(N-1) v e o amizen—a feo—oalo ool P
selected to be 0.9'%- s where N is a current iteration number. The Sy

and s, are thc number of oscillation of the derivatives dp. /d6 and
op./09. The derivative terms in Eq. (19.a) may be approximated

with the following finite-difference forms:
., [0, (05+40,05)-Dor(85.04)]
= M} AV M X4 LV AV (20 a)
a6 A8

Wer  [Per(Bp.0g+80)-Pe(By.09)]
3 8¢

(20.b)

In this optimization study, three linearized buckling analyses are
uscd to calculate the derivative information in Egs. (20.a) and (20.b),
and one nonlinear buckling analysis is used to evaluate p.;. in Eg.

(19.a). The values of A® and A¢ are sclected to be 19 in most
iterations. -

Imporiani numerical results obtained in optimization study are
given in Fig. 5, which shows the fiber orientations 6 and ¢, and the
associated critical buckling pressure p., determined in each
iteration for the shell. The initial values of 6 and ¢ are selected to be
909 and -90°. After twelve iterations, the optimal values of 6 and ¢
converge to 63.4% and -59.0° respectively and the optimal critical
buckling pressure converges to 25.6 ksi. Figure 6 shows the load-
end displacement curves for the composite shell associated with the
first iteration and the final iteration (optimal solution). Again, it
can be seen that under the optimal condition, not only the critical
buckling pressurc of the shell is increased but also the post
buckling strength of the shell is greatly improved.

Comparing the optimal critical buckling pressures pg;, 25.6 ksi,
obtained from this optimization analysis with that, 25.5 ksi, obtained
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from previous optimization analysis, one can observe that the
increase in the optimal critical buckling pressure is very
insignificant. Figure 7 shows the load-end displacement curves
under optimal fiber angle conditions for the composite shell with
{+6/90,/0] laminate layup and [6/¢/90,/0]g laminate layup. It can
be seen that the postbuckling strengths are also almost the same for
the shell with these two different laminate layups. Therefore, it can
be concluded that the ontimal buckling behavior of the comnosite

shell with [_4;6/902/01S laminate layup is about the same as that of the
composite shell with [8/¢/90,/0]g laminate layup. Hence, the

optimization of the composite shell using two design variables may
be undesirable since it costs more computation time.

CONCLUSIONS

From the optimization results obtained in this study, the
following conclusions can be drawn:

1. For the optimization of a simply supported [+6/902/0]s

PR T Y 1 Aot o P g

Lumpuauc shell wunder external uyunualauu bUlllpleblUll
using the sequential linear programming formulation, the
trends in finding the optimal fiber orientation are the same
for wusing linearized buckling analyses and for wusing
noniinear buckling anaiysis. Hence, the calcuiation of the
derivative information using the nonlinear buckling
analysis may be subsiituted by that using the iinearized
buckling analysis.

2. The optimal buckling behavior of the simply supported

rJ_n/Qn /01 nosite chell undar eaxtarnal hude

IS 7VQivig vvu-yvo e Siivis unuer vAawviiial u]ulOSLauv

co.mpres’mc‘)’{ln ismabgut.lhe same  as that of the composite shell
with [8/¢/90,/0]¢ laminate layup. Therefore, the ojitimization
of the composite shell using two design variables may be
undesirable since it costs more computation time.
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