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1. General

Reinforced concrete is by far one of the most commonly used
construction materials with applications in many important categories
such as tall ©buildings, bridges, off-shore oil platforms, nuclear
containments, pressure vessels, etc. This composite material
demonstrates a highly nonlinear behavior caused by cracking, aggregate
interlock, bond slip, dowel action, shrinkage, creep and crushing.
Because the behavior of reinforced concrete can involve many nonlinear
phenomena interacting with one another, the formulation of rational
analytical procedures is very difficult, and present—-day design methods
continue in many respects to be based on empirical approaches, using the
results of a large body of experimental data assembled over many years.
Such an approach has been necessary in the past, and to some extent is
still necessary. However, with the help of computer, the finite element
method now offers a powerful and general analytical tool for the analysis
of reinforced concrete members and structures particularly some of the
complex surface and shell structures that fell outside the experimental
data base. The nonlinear behavior of these reinforced concrete surface
and continuum structures, previously ignored or treated in a very
approximate way, can now be considered rationally. Furthermore, it is
possible to carry out numerical simulations of the structural response up
to collapse, so that various safety aspects of the structure can be
assured and its deformation characteristics can be found.

Many important classes of structures can be approximated as being in
a state of plane stress. Included with this category are many of the
commonly used members, such as beams, panels, slabs and thin shells.
Therefore, the present paper concentrates on the biaxial states of stress
for reinforced concrete.
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Behavior of Concrete

Typical stress-strain curves for concrete subjected to monotonic
uniaxial compression are shown in Fig. 1 (Winter and Nilson, 1979).
Concreste has 8 nearly linsar elastic behavior up to about 30 percemt of
its maximum compressive strength . f ', For stress above 0.30f ’,
microcracks form at the mortar—coarse lggregate interfaces and propagate
through the mortar wupon further loading (ASCE, 1981). Owning to these
microcracks, concrete begins to soften until it reaches the peak stress
at a strain of 0.002 to 0.003. Beyond the peak, with increasing
compressive strain, damage to concrete continues to accumulate and
concrete enters the decending portion of its stress—strain curve, a
region marked by the appearance of macroscopic cracks.

Fig. 2 shows the stress—strain curve for concrete in uniaxial tension
(Bughes and Chapman, 1966). The shape of the curve shows many
similarities to the uniaxial compression. However, the maximum tensile
stress is much less than the maximum compressive stress. The ratio
between uniaxial tensile and compressive strength usually ranges from
0.05 to 0.1. This is not surprising since the role of microcracking must
be even more important for tensional states of stress.

3. Biaxial behavior of Concrete

Under differesnt combina iaxial loading, the stremgth sand
stress—strain behavior of <concrete are somewhat different from those
under uniaxial conditions. Fig. 3 illistrates a typical biaxial strength
envelope for concrete subjected to proportional biaxial loading (Kupfer,
Hilsdorf and Rusch, 1969). The maximum strength envelope seems to be
largely independent of 1load path (Nelissen, 1972; Maeckawa and Okamura,
1983). Under the condition of biaxial compression, a maximum strength
increase of approimately 25 percent is achieved at a stress ratio
of 0s/0,=0.5. This increase is reduced to about 16 percent at an equal
biaxial compression state (o0,/0,=1). Under combinations of tension and
compression, concrete exhibits a noticeably reduced strength. The
compressive strength decreases almost linearly as the applied tensile
stress is increased. Other test results (Vecchio and Collins, 1982;
Maekawa and Okamura,1983) showed that principal tensile stress has a
degrading effect not only on the principal compressive strength but also
on the principal compressive stiffness. Under biaxial tension, concrete
exhibits & nearly constant tensile strength, which is almost the same as
that of its uniaxial tensile strength.

es_8n ilu i n te

In general, there are two types of failures for concrete, denoting
these tensile and compressive types. Tensile and compressive type
failures are usually characterized by brittleness and ductility.
------ +dwvale T™h a danailta Sevena of falluwca 3o JafFinad aa 1. N
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where a major crack rapidly appears inm the direction normal to the
principal tensile stress. The compressive type of failure is defined as
''crushing '’ where many small distributed cracks appear and the two
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For biaxlal compression, the failure mode is the crushing type, but for
biaxial tension, the failure mode is a cracking type. For
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tension—compression, both failure modes are observed (Maekawa and
Okamura, 1983). Cracking failure will take place under stress conditions
where the tensile stress is relatively large (cllft'>°'3 and az/fc'<o,s5)
and crushing failure will take place under high compression—low temsion
stress state (o,/f '>0.9 and o,/f_'¢0.25). Throughout this discussion it
is assumed that confinement from the third direction does not restrict
movement in that direction.

There are many failure criteria proposed for concrete (Chen, 1982).
Among those, the strength of concrete under combined shear and direct
stress may be predicted closely by the octahedral shear stress failure
criterion. This criterion relates the octahedral shear stress (Toct) to
the mean stress (om) at failure

Tt =f(0m)

Mikkola and Schnobrich (1970) obtained close agreement with the
experimental resulis of Kupfer, et al, by using linear expressions of t
form

Tog =6 - bo, (1)

where a2 and b are material constants. Equation (1) represents two
expressions; omne is valid for biaxial compression, while the other is
valid for the biaxial tension and tension—compression regions. If the
constants a and b are evaluated in terms of concrete strength in tension
and in compression, f ' and f£.', respectively, them Eq. (1) yields the
following two expression:

/'c =0 (2)

-1/ =0 &)

where a and B are given as
a=/f/f'=010 and § =1.16 (4)

Equation (2) is used to indicate the boundary between cracked and
uncracked concrete in biaxial temsionm and temsion— compl:xsiﬁi‘l Tegiﬁﬁs.
Equation (3) is used as a yield criterion for concrete in biaxial
compression. These equations have a discontinuity at points (0,f *) and

(f *,0), where either equation could be wused. Yielded concrete -will
crSsh wunder further losding. Hand, Pecknold and Schnobrich (1972) have

----- unger iurtiasr lgoaging, zZang Yecxneld ang oschnebrich

used & strain-based criterion to determine the crushing boundary. It is

accomplished by replaceing f with the concrete crushing

strain e _, v with the octahedral shearing strain ¢ » and o with the
u oct oct m

mean strain LIS in equation (3). The criterion is given as follows

3 -1 )
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5. Plasticity—Based Model for Concrete

When concrete is subjected to compressive stresses, experimental
results (Sinha, Gerstle and Tulin, 1964) have indicated that the
nonlinear deformations of concrete are basically inelastic, because upon
unloading only a portion of the strains can be recovered from the total
strains (Fig. 4). Therefore, the stress—strain behavior may be separated
into the recoverable part which can be treated within elasticity theory
and the irrecoverable parts which can be treated by plasticity theory.
Plasticity based models have been extensively used in recent years to
describe the behavior of concrete. Initial plasticity models described
concrete as an  elastic—perfectly plastic material (Mikkola and
Schnobrich, 1970; Hand, Pecknold and Schnobrich, 1972; Abdei Rahman,
1982). Later models incorporated a hardening behavior (Chen and Chen,
1975; Buyukozturk, 1977; Chen and Ting, 1980).

Elastic—Perf 1 las odel

Under high compression, it is know that concrete undergoes flow
somewhat like a ductile materisl on the yield surface before reaching its
crushing surface (analogous to the yield surface but in terms of strainm).
This limited plastic flow ability of concrete before crushing can be

represented by the introduction of a elastic—perfectly plastic model.

6.1 Criterion of Loading and Unloading

For an elastic-perfectly plastic material, the ;enerul bekavior under
a complex stress state can be defined by the following three statements:

1. The material is elastic until it reaches the yield 1limit, This
is known as the yield function

f({e}) =K (6)

where K is a material comstant and {o}=[0., 0, 7,|7 are the
inplane stress components.

2. Then plastic deformation takes place up to the crushing surface.
For the plastic flow to continue, the state of stress must remain

on the yield surface. Thus the loading criteriom is

df =a‘?j} d{o} =0 (N

3. When the stress intensity drops below the yield value, the flow

strain is permanent and the unloading criterion is

if = a{ }d(o}<0 (8)

In general, the yield function f({o)}) = K represents a hypersurface
in a three—dimensional stress space. Fig. 5 shows those three states and
yield surface in a two dimensional principal stress space.

6.2 Flow Rule and Normality Law

The total strain experienced by a plastic body is the sum of the
elastic and plastic strains, {s]e and {e)} . That is
P

e} ={e) + {e}y (%)

. T
where {t}=l€u.¢y.74]7 | If in terms of incremental strains

die} =dfe}. + d{e}, (10)

¥hen the material deforms plastically, we can relate the plastic

incremental strains d(elp with a plastic potential function g{({o}) by the
following equation

09

d{e), =dx 307

(11)

where dA is 8 positive scalar factor., In the simplest case when the
yield function and plastic potential function coincide f = g. Then,

d{(}p =d) ?}‘) (12)

Equation (12) is called the associated flow rule because it is connected
with the yield criterion. If f # g, equation (11) is called the
nonassociated flow rule. The associated flow rule has been used by a lot
of investigators (Mikkola and Schnobrich, 1970; Hand, Pecknold and
Schnobrich, 1972; Abdel Rahman, 1982). But the need for a nonassociated
flow rule has been demonstrated by numerical results of some practical
problems (Vermeer and Borst, 1984). For convenience, let

-

PRI ) S )¢ ar sl 5
d{o } do,’ Oo, ' 8r, it

T 9¢ rég dg dg 1

QLRI P (14)
3o} T
where {a} and (b} are the flow vectors associated with potential
functions £ and g. From equaticn (7), when plastic deformation takes

place, we have
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df = a“d{a}_{a)'d{a} =0

Multiplying the equation by dA the following expression is obtain
dMa}T d{o}=d{e}Jd{o} =0 (15)

Since d{o) is tangential to yield surface, with the associated flow rule
(12), the incremential plastic strain must be mnormal to the yield
surface. Equation (15) is called the normality law. It should be noted
that if a nonassociated flow rule is wused, the incremental plastic
strains are no longer normal to the yield surface.

6.3 Incremental Stress—Strain Relationships
The e

1
be given by

¢ or recoverable strain increments a N -
ecoverable sirain increments d e’ can be assumed to

< {e}
generalized Hooke's law. In nbbtoviated form
d{a}:-.[ C]l d(‘}e (16)

where [C]e is the elastic stiffness matrix and is given as follows

B rw 0]
[Cle=g——=gpp 1 0
- u oox-uJ (17)

2

In this equation E_ s the Young's modulus of concrete and p is the
Poisson's ratio. Now substitution of equation (10) into equation (16)
yields

dlo}=(Cl.( d{e}- d{e},) (18)

Considering  the general flow rule, the incremental form of the
stress—strain relation, written in terms of total strain is

dlo} =] C e dfe} (19)

where

[Clo=ICl+]C],

and
o], — - Ll (el 20
y =
@ [01.6] ‘
Since [C] is symmetric, [C] will also be symmetric, if associated

flow rule® is used (ie, f & g). Otherwise, [C] is unsymmetric. It
should be noted that the matrix [C]ep is sinsulg:.e

401

1. Elastic-Strain Hardening Plastic Model

A generalization of the elastic—perfectly plastic model can be made
by the use of the strain—hardening theory of plasticity inm estnblxshlng
the constitutive relations for concrete. The primary characteristics of
this model is the introduction of the pressure sensitivity of inelastic
behavior. With this approach an initial yield surface is defined as the
limiting surface for elastic behavior and this surface is located at a
certain distance from the failure surface. Fig. 6 shows the projections
of these two limiting surfaces in a two dimensional principal stress
space. When the state of stress lies within the initial yield surface,
the material behavior is assumed to be in the elastic range. When the
material is stressed beyond the elastic limit surface, a subsequent new
discontinuity surface is developed and replaces the initial yield
surface. Unloading and reloading of the material within this subsequent
loading surface results in elastic behavior, and no additional plastic
deformation will occur wuntil this new surface is reached. Further
discontinuity surfece and additional plastic deformations will result, if
loading is continued beyond this surface. Final collapse of the concrete
is defined when the failure surface is reached and concrete cracking or
crushing occurs.

7.1 Hardening Rule

The hardening rule defines the motion of the subsequent yield surface
during plastic loading. A number of hardening rules have been proposed,
such as isotropic hardening, kinematic hardening and mixed hardening
rules. For the monotonic loading case, because no reverse loading takes
piace it is convemient to use ths isotropic hardening rule te simulate
the concrete behavior. An isotropic hardening rule assumes that the
yield surface expands uniformly without distortion as plastic flow occurs
(Fig. 7). This hardening rule implies that because of hardening the
material will exhibit an increase in the compressive yield stress equal

to the increase in the tensile yield stress.

7.2 Criterion of Loading and Unloading
For elastic-strain hardening concrete, a yield function can be
defined by the relation

()L K)=F({})-K (21)

such that whenever the function F becomes equal to the value of K
yielding would begin and K takes on a new value. The function F can then
be looked upon as a loading function and K is a yield function which
depends on the complete previous stress and strain history of the
material and its strain-hardening properties. We can now distinguish
four cases for a strain—hardening model:

1. [ =0,dF = dfe} >0 (22)
57 1)
f = 0 means the stress state is oo the yield surfacs. dF > 0

means the stress state is moving out from the yield surface and
plastic flow is occuring. This constitutes loading.
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F
2. 1 =0, dp:%d(::}:o (23)

dF = 0 correspponds to the case of the stress state moving on the
yield surface and is called neutral loading. No plastic flow
will occur.

3. /=0, dF = de}< 0 (24)

aF
e}
dF ( 0 means the stress state is moving in from the yield surface
and unloading is taking place.

4., If f <0, the stress state is an elastic one.

7.3 Effective Stress and Effective Plastic Strain

In the strain-hardening theory of plasticity, the hardening
parameters in the loading function can be related to the experimental
uniaxial stress—strain curve. In this way, some stress variable called
effective stress and some strain variable called effective plastic strain
are needed, so they can be plotted against each other and used to
correlate the test results.

Because the loading function F({o}) determines whether additional
plastic flow takes place or not and is also a positively increasing
function, it can be used as a stress variable to define the effective
stress as follows

F({e}) =cs" (25)

Where S is the effective stress and C and n are constants dependent on
the loading function. To determine the effective plastic strain e the

’
general way is to define the effective plastic strain increment rs some
combination of plastic straim increments. The simplest type is

de, =d\ =D \/{e},,l d{e}, (26)
where D is a constant.

The effective stress—effective plastic strain relation has the
general form

S =5 (¢,) (27)
Differentiating equation (27) yields

S =h(S)de, (28)

where h is the slope of the effective stress—effective plastic strain
curve at the current value of S, The intergrated effective plastic
strain is a function of effective stress only. ’

4s

€ = ll(s) (29)
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7.4 Incremental Stress—Strain Relationships

Once the loading surface is defined, incremental plastic
stress—strain relations based on the flow rule are applicable to such a
material model snd the corresponding constitutive equations can then be
derived. Recall equation (18)

do}=[Cl. (d{e}- d{c},) (18)

Recall flow rule (11), flow vectors (13) and (14). Then, multiply the
above equation by {a}T

(8} d{o )} ={a)}T [C]. ( d{e}- dr(8}) . (30)
However,
{a}T d{o} =dS =hde, =hd) (31

Substitute equation (31) into equation (30) and solve for dx

_ {7 Icl. dfe}

S A TN} (32)
Rewrite equation (18). Then

d{o}=[Cl.( d{e}- r{8}) (33)
Substituting equation (32) into equation (33) yields

dlo} =[Cly d{e} (34)
where

[Cls =ICl. +(Cl,
and

c], = - [hCI.{b)ia}’ [Cle 5

+{a}7 [C]. 1}

If the associated flow rule is used (ie. f=g) [C]ep will be
symmetric. Otherwise, ICJG is unsymmetric. It should be noted that
when the hardening parameter Pp =o, equation (35) reduces to eguation
(20), which is the incremental stress—strain relationships for
elastic—perfectly plastic model.

8, Concrete Cracking

There are two competing criteria for determining the initiation and
propagation of cracking in concrete, a strength criterion and one based
on fracture mechanics concepts. With a strength criterion, in tension
dominated regions, tensile cracks occur as soon as the tensile strength
of plain concrete is exceeded in the cracking direction or alternatively
when the maximum tensile strain is attained in some direction. With the
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fracture mechanics approach, propagation hinges on the 1level of the

fracture energy. In the finite-element analysis of concrete, two
different approaches have been employed to model concrete cracking: the
discrete and the smeared crack representations. Both of these

resprentations have been employed using both the strength criterion and
the fracture mechanics approach., The smeared crack concept is more in
keeping with the philosophy of the finite element method with its
continuous displacement.

In the discrete crack system, a crack is modeled by disconnecting or
separating elements on each side of a node thereby the splitting the node
and requiring additional nodes (Ngo and Scordelis, 1967; Nilson, 1968).
This procedure therefore actually produces a crack by the physical
separation into two sides across a crack, as shown in Fig. 8. However,
difficulties encountered in the redefining of the finite element topology
and the lack of gemerality inm possible orack directionms have restricted
the use of discrete crack models. The most successful use of discrete
cracking has been with fracture mechanics (Saouma and Ingraffea, 1981).
However the computational activity for such approaches especially when
they regrid during the solution process makes them impractical for any
but special research problems.

In the smeared crack system, introduced by Rashid (1968), cracked
concrete is assumed to remain a continnum. A crack is not discrete but
implies an infinite number of parallel fissures across that part of the
finite element (Fig. 9). After cracking has occurred, the cracked
concrete becomes an orthotropic material. The incremental stress—strain
relationships associated with the coordinate system alined to the cracked
direction become

ER e
d02 = OEC 0 dez (36)
l"-"'mj LO ¢ 'BGJ { 4712 J

With early smeared crack models, the modulus of elasticity of
concrete is reduced to zero in the direction normal to the crack axis.

Further, a reduced shear stiffness BG is assumed on the cracked plane to

account for the aggregate interlocking or shear friction that are
presented at the crack surface. The pratical value chosen for B (between
0 and 1) does not appear to be critical for problems on which a simple
strength criterion is a reasonable strategy for crack definition (Hand,
Pecknold and Schmobrich, 1972; Lin and Scordelis, 1975; ASCE, 1981), but
values greater than zero are necessary to prevent numerical difficulties.
On the other hand problems in which a dominant crack developes and the
more elaborate fracture mechanics approach must be formulated,
the B function becomes much more sensitive (Rots, et. al., 1985).
Several questions have been raised regarding the validity of the smeared
crack process based on a strength criterion (Bazant and Cedolin, 1979).
These questions focus on the objectivity of the crack process if strength
controlled and on the development of strain localization. Strain
localization can be accompanied by numerical instability problems which
are partially stabilized when reinforcing is included (Rots, 1985).

In most crack models, the crack direction is assumed fixed once it
forms and while it remains open., Several references restrict secondary
cracking to form orthogonal to the primary crack (Darwin and Pecknold,
1974; Kabir, 1976). However, analytical models which incroporate a shear

retention factor BG should allow rotation of the concrete principal
stress directions after initial cracking, and the second crack need not
be perpendicular to the first crack. This restriction may violate the
cracking criterion within the element, therefore, a nonorthogonal crack
model is more realistic (Abdel Rahman, 1982). After two cracks take
place, the incremental stress-strain relationships become

aa, 0 ag&;
do, l 0 J dey 37
Atz 0 0 ﬂG 4712

A consistent shear retention model for nomorthogonal cracks can be
developed by requiring equal shear stresses on the nonorthogonal crack
faces. In doing so it is convenient to orient the orthogonal reference
axis with one axis bisecting the nonorthogonal crack directions (ASCE,
1001 AL 3.1 Dabo 1087) Whoao sa N aha adal ad -
1704 AUGEL REAMAEAN, 1704/ « When such a shear retention model is uscau, a
third crack can form and the cracked concrete will 1lose all the
stiffness.

The other kind of cracking model is the rotation ecrack model.
Experiments by Vecchio and Collins (1982) indicate that the ''average
crack direction’’ does change as the loading increases, as dinitially
formed cracks become less prominent and new cracks are formed. This
average crack direction is defined to be perpendicular to the maximum
principal strain. Gupta and Habibollah (1982) have developed an
alogorithm which allows for the changing crack direction effect and this

algorithm has been implemented by Milford and Schnobrich (1984).

9, Tension Stiffeping

As the concrete reaches its tensile strength, primary cracks form.
At the primary oracks, the concrete stress drops to zero and steel
carries the full load. However, between the cracks the 1load is shared
between steel &and concrete (Fig. 10). This ability of concrete between
cracks to carry some tensile load and to contribute to the overall
stiffness of the system ic called ''tension stiffening’' , The tension
stiffening effect has been represented in two ways. In one case, the
tension portion of the concrete stress—strain curve has been given a
descending branch (Lin and Scordelis, 1975) as shown in Fig. 11. The
second method is to increase the steel stiffness (Gilbert and Warmer,
1978) as shown in Fig. 12. The additional stress in the steel represents
the total tensile force carried by both the steel and the concerte
between the cracks, The added stress is lumped at the level of the steel
and oriented in the same direction for reasons of convenience.

[ lications

With the employment of nonlinear finite element analysis of
reinforced concrete structures the structural engineer can establish load
capacities and structural behavior of a number of structures. For many
structures such an analysis is unnecessary. Capacities and behavior can
be much more easily and economically estabiished. For some classes of
structures however this is not the case, for example surface and shell
structures. Here the element method does provide the engineer with
insights into how such structures softenm and fail, insights that he could

405



406

not acquire by other means.

Several investigations into failure loads for shell type structures
have taken the form of strength based cracking finite element models with
both elasticity and hardening models. These models are subject to the
questions of the correctness of the strength based model. the problems of
objectivity and localizations. With shell structures the problems are
compounded because of the sensitivity of the results to the chosen shell
element. Shear and membrane locking of many elements can induce
significantly more of this type of stress than should prevail.
Futhermore the positioning of the stress points, particularly with
numerically integrated elements, moves the stress monitoring point away
from the region of peak values. These factors coupled with the
computational intensity of these problems results in element meshes of
sufficient dimension that the question of objectivity of strength based
cracking process does not appear to be a dominant factor.

To illustrate the type of answers and insights that can be gained two
shells are discussed. For the first sheil a hypar studied by Chan (1982)
is presented. This shell is in a gable roof configuration. The mesh of
9 node Lagrangian shell elements used by Chan is shown in Fig. 13. The
Darwin (1974) model was used to define the concrete properties with

strancsth basad cracking modal whish includad tensign stiffenines with
strength based oracking model which included temsion stiffeming with

the steel properties. This investigations also included creep
particularly and nonlinear geometry effects. Significant result that
Chan observed was a marked reduction in failure load as a consequence of
creep, Fig. 14. The failure mechanism gseems to involve the inflnence of
creep on the support the shell provides the ridge beam. The consequence
of the reduction in support translates into increased moments and a
significant shift on the interaction diagram.

a
Y
in

a

The second shell problem discussed is the wind load on & cooling
tower (Milford and Schnobrich, 1984). The shell is also modeled by 9
node Lagrangian shell elements Fig. 15. This study also used a strength
criterion on cracking but with tension stiffening. Loading was wind
Because the steel percentages in the circumferential and meridional
directions are markedly different the cracking model included a rotating
crack capability. Of particular note in this study is the dependence of
the result on the selected tension stiffening Fig. 16. The shell
demonstrated an inability to redistribute circumferentially around the
shell due to the constraints placed by the wind load distribution. Thus
a fully developed ultimate 1load for a beam whose cross section is
composed of an  open circular section with an enclosed angle of

spproximately 135° was not able to develop.

These studies demonstrate the class of problems that the nonlinear
analyses can address and that significant engineering results can be
achieved using basic concrete material models for surface and shell

structures.
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